Potenzfunktionen - 4. Stufe
Die Graphen der Funktionen mit f(x) = x-1/n, n ∈ IN*
Vergleich mit Funktionen aus Stufe 3

Vergleiche den neuen Graphen (blau) mit dem, den Du schon aus Stufe 3 dieses Kurses kennst (rot strichliert); mit dem Schieberegler kannst Du dazu wieder die Exponenten verändern.
- Beschreibe Gemeinsamkeiten und Unterschiede der Graphen! Achte dabei auf
- Definitionsbereich
- Symmetrie
- Monotonie
- größte und kleinste Funktionswerte
- Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen.
HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen
Exponenten, Brüche und Potenzgesetze
Im vorliegenden Fall betrachten wir negative Stammbrüche als Exponenten. Denke dabei insbesondere an folgenden Zusammenhang:
- Für eine reelle Zahl a und eine natürliche Zahl n0 wird definiert:
- für
Auf unsere Situation angewandt ergibt sich:
Überprüfe die folgende Behauptung auf Richtigkeit und begründe Deine Entscheidung:
Es sei n eine natürliche Zahl; dann hat die Funktion
den Definitonsbereich D = IR+.
Potenzfunktionen und ihre Umkehrfunktionen
Beispiel I: Es sei g eine Potenzfunktion, definiert auf D = IR+0 durch . Gesucht ist die Umkehrfunktion von .
ergibt sich aus durch Auflösen nach . Es ist:
Vertauschen von x und y ergibt schließlich die gesuchte Funktion: f(x)x3.

Beispiel II: Es sei f eine Potenzfunktion, nun definiert durch mit dem Definitionsbereich D = IR+. Gesucht ist wieder ihre Umkehrfunktion f-1.
Auflösen nach x ergibt:

Hinweis: Man beachte besonders hier die unterschiedliche Bedeutung von f-1 und f(x)x-1!
Vergleich mit Potenzfunktionen der Stufe 1
Im Zusammenhang mit den Umkehrfunktionen dieser Art kann es sinnvoll sein, sich die Potenzfunktionen der Stufe 1 noch einmal vor Augen zu führen. Hier kannst Du direkt zur Stufe 1 springen.
Zu welchen vorgegebenen Potenzfunktionen gibt es eine Umkehrfunktion? Welche Eigenschaften muss die gegebene Potenzfunktion erfüllen, damit es eine Umkehrfunktion gibt?
Begründe Deine Überlegungen und beachte dabei besonders Definitions- und Wertebereich der betrachteten Funktionen, sowie ihr Monotonieverhalten!
Zusammenfassung
Die Umkehrfunktionen von Potenzfunktionen der Form mit n ∈ IN* und sind Potenzfunktionen der Form Sie sind definiert auf dem Definitionsbereich D = IR+0.
Die Umkehrfunktionen von Potenzfunktionen der Form mit n ∈ IN* und sind Potenzfunktionen der Form . Sie sind definiert auf dem Definitionsbereich D = IR+.
*Zusammenfassung: Was bewirken Parameter in Potenzfunktionen? - Merkregel "5 S"-Prinzip
(* Bearbeitung freiwillig, Ergänzung)

Schau Dir dieses Video (Link hier) auf www.oberprima.com an. Dort lernst Du die Merkregel des "5 S"-Prinzips kennen; die "5 S" lauten:
- Spiegeln
- Strecken
- Stauchen
- Schieben
- Superponieren
Beantworte nun die folgenden Fragen:
- Wie findest Du das Video? Was macht der Vortragende gut, welche Fehler macht er?
- Welche der genannten Veränderungen kannst Du mit dem Applet erzielen? Welche der Parameter sind für welche Veränderung verantwortlich?
- Wo gehen die Variationsmöglichkeiten des Applets über die im Video vorgestellten hinaus?
*Zum Weiterdenken: Mit Funktionen malen
(freiwillig)

Das obenstehende Bild ist vollständig aus Potenzfunktionen der Form
mit zusammengesetzt.
Bearbeite zu dem Bild die folgenden Fragen:
- Auf welchen Intervallen sind die Funktionen jeweils definiert?
- Das "Blatt" rechts oben im Bild ist aus drei verschiedenen Potenzfunktionen aufgebaut.
Untersuche, wie die Parameter a und q die Graphen beeinflussen und welche Werte für a und q hier verwendet sind. - Von welcher Form sind die Funktionen, die das Blatt links unten ausbilden?
- Wie kann man die Größe der Blätter beeinflussen?
- Auf welchen Abschnitten sind die Funktionen definiert?
Und nun geht's zum Abschlusstest