Zentrische Streckung/Eigenschaften der zentrischen Streckung/7.Station: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Leonie Porzelt
(2. Aufgabe eingefügt)
Keine Bearbeitungszusammenfassung
 
(24 dazwischenliegende Versionen von 5 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
<div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;">
{{Navigation verstecken
[[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung|1. Station: Fixelemente]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/2.Station|2. Station: Geradentreue und Parallelentreue]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/3.Station|3. Station: Winkeltreue, Längentreue und Flächeninhaltstreue]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/4.Station|4. Station: Längenverhältnistreue]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/5.Station|5. Station: Kreistreue]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/6.Station|6. Station: Zusammenfassung]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/7.Station|7. Station: Übung]]
|{{Eigenschaften der zentrischen Streckung}}
</div>
|Lernschritte einblenden
|Lernschritte ausblenden
}}
__NOTOC__
 
 
==7. Station: Übung== 
 
{{Box|1=Bearbeite die vier Aufträge|2=
 
|3=Arbeitsmethode}}
 
Gegeben ist eine Gerade g, die durch den Punkt A(1|2) geht und die Steigung m= 0,5 besitzt.
 
#Bestimme die Geradengleichung und zeichne die Gerade in dem Koordinatensystem ein!
#Strecke den Punkt A mit Z(0|0) und k = 2, indem du den Punkt A' verschiebst und gib die Koordinaten an!
#Strecke die Gerade g mit Z(0|0) und k = 2 im Applet!
#Berechne die Gleichung von g' mit Hilfe der zentrischen Streckung!
 
<ggb_applet height="400" width="600" showreseticon="true" id="qe7tverd" />
 
Trage den Wert, der in der Klammer angegebenen Größe, in die Lücke ein:
 
<div class="lueckentext-quiz">
'''zu 1:'''
g: '''2(y)''' = '''0,5(m)''' <math>\cdot</math> '''1(x)''' + t <math>\Rightarrow</math> t = '''1,5 (Berechne den Wert mit dem Taschenrechner)''' <math>\Rightarrow</math> y = '''0,5 (m)''' <math>\cdot</math> x + '''1,5 (t)'''<br>
<br>
<br>
 
zu 2:
==7. Station: Übung==
A'('''2 (x- Wert)'''|'''4 (y- Wert)''')<br>
===1. Aufgabe===
<div style="border: 2px solid #00CD00; background-color:#ffffff; padding:7px;">
{|
|[[Bild:Porzelt_Konstruktion_Dreieck.jpg]]||Mit Hilfe der Eigenschaften Geradentreue und Parallelentreue kann man Figuren wie folgt konstruieren:<br>
Zeichne ein Koordinatensystem <math>(0 \le x \le 14 ; -3 \le y \le 6)</math> mit dem Dreieck PQR und dem Zentrum Z in dein Heft. <br>
(Die Koordinaten für die Punkte kannst du im Bild ablesen.)<br>
#Bilde den Punkt R wie gewohnt auf R' ab.<br>
#Zeichne die Parallele zu RP durch R' ein. Sie schneidet [ZP im Punkt P'.<br>
#Jetzt kennst du 2 Möglichkeiten um Bildpunkte zu konstruieren. Entscheide selbst, wie du den Punkt Q' konstruierst.
|}
</div>
<br>
<br>
:Hier kannst du deine Lösung mit der von Dia vergleichen:
zu 3:
:{{Lösung versteckt|
Die Gerade g' ist parallel zu g.<br>
[[Bild:Porzelt_Konstruktion.jpg]]}}
<br>
<br>
===2. Aufgabe===
zu 4:
<div style="border: 2px solid #00CD00; background-color:#ffffff; padding:7px;">
g': '''4(y)''' = '''0,5 (m)''' <math>\cdot</math> '''2(x)''' + t <math>\Rightarrow</math> t = '''3 (Berechne den Wert mit dem Taschenrechner)''' <math>\Rightarrow</math> y = '''0,5 (m)''' <math>\cdot</math> x + '''3 (t)''
:Gegeben ist eine Gerade g, die durch den Punkt A(1|2) geht und die Steigung m= 0.5 besitzt.
:a)Bestimme die Geradengleichung und zeichne die Gerade in ein Koordinatensystem ein. <math>(0 \le x \le 6 ; 0 \le y \le 6)</math>
:b)Die Gerade g wird zentrisch mit Z(0|0) ud k= 2 gestreckt. Konstruiere die Bildgerade g'.
:c)Berechne die Gleichung von g' mit Hilfe der zentrischen Streckung!
</div>
</div>
<br>
:'''Hake die richtige Lösung ab:'''
<quiz display="simple">
{'''Wie lautet die Geradengleichung für g?'''}
+g:y=0.5x+1.5
-g:y=1.5x+0.5
-g:y=0.5x+1


{'''Wie lautet die Geradengleichung für g?'''}
+A'(2|4)
-A'(4|2)
-A'(1|3)


{'''Wie lautet die Geradengleichung für g'?'''}
[[Bild:Porzelt_lobenderPanto7.jpg]]
+g':y=0.5x+3
-g':y=3x+0.5
-g':y=0.5x+6


</quiz>
<br>
:Hier kannst du deine zeichnerische Lösung mit der von Dia vergleichen:
:{{Lösung versteckt|
[[Bild:Porzelt_Aufgabe2.jpg]]}}
<br>


<div align="left">[[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/6.Station|Zurück zur 6. Station]]</div>
{{Fortsetzung|weiter=Weiter zum Lernpfad: Der Vierstreckensatz|weiterlink=../../Vierstreckensatz}}
[[Kategorie:Interaktive Übung]]
[[Kategorie:R-Quiz]]
[[Kategorie:GeoGebra]]

Aktuelle Version vom 23. April 2022, 16:01 Uhr


7. Station: Übung

Bearbeite die vier Aufträge

Gegeben ist eine Gerade g, die durch den Punkt A(1|2) geht und die Steigung m= 0,5 besitzt.

  1. Bestimme die Geradengleichung und zeichne die Gerade in dem Koordinatensystem ein!
  2. Strecke den Punkt A mit Z(0|0) und k = 2, indem du den Punkt A' verschiebst und gib die Koordinaten an!
  3. Strecke die Gerade g mit Z(0|0) und k = 2 im Applet!
  4. Berechne die Gleichung von g' mit Hilfe der zentrischen Streckung!
GeoGebra

Trage den Wert, der in der Klammer angegebenen Größe, in die Lücke ein:

zu 1: g: 2(y) = 0,5(m) 1(x) + t t = 1,5 (Berechne den Wert mit dem Taschenrechner) y = 0,5 (m) x + 1,5 (t)

zu 2: A'(2 (x- Wert)|4 (y- Wert))

zu 3: Die Gerade g' ist parallel zu g.

zu 4: g': 4(y) = 0,5 (m) 2(x) + t t = 3 (Berechne den Wert mit dem Taschenrechner) y = 0,5 (m) x + 3 (t)


Porzelt lobenderPanto7.jpg