Quadratische Funktionen erforschen/Von der Scheitelpunkt- zur Normalform
In diesem Kapitel kannst du herausfinden, wie du quadratischen Funktionen in Scheitelpunktform in quadratische Funktionen in Normalform umwandeln kannst. |
Von der Scheitelpunkt- zur Normalform
Das folgende Applet kannst du nutzen, um deine Ergebnisse aus Aufgabe 1 zu kontrollieren. Außerdem kannst du mit den Parametern beider Darstellungsformen experimentieren und zum Beispiel untersuchen, wie du die Parameterwerte verändern musst, um beide Graphen an einer beliebigen Stelle im Koordinatensystem übereinander zu legen.
Erklärvideo
Daniel Jung hat auf Youtube in seinem Channel Mathe by Daniel Jung zu den verschiedensten Themen Erklärvideos erstellt.
Falls dir die Umformung von der Scheitelpunkt- auf die Normalform schwer fiel, kannst du dir hier ein Video dazu anschauen und es dann noch einmal probieren. Denke daran dir Kopfhörer anzuziehen, sofern du nicht alleine in einem Raum bist.
Achtung: Parameter c Parameter e
Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 15) .
a) Lies dir die Unterhaltung von Fabian, Merle und Lucio durch. Zeichne zwei Parabeln in deinen Hefter bei denen (1) die Parameter und gleich sind bzw. (2) die Parameter und nicht gleich sind.
b) Gib jeweils die Werte für und an.
Nutze das GeoGebra-Applet um deine eigene Lösung zu kontrollieren:
Merksätze
Erstellt von: Elena Jedtke (Diskussion)