Quadratische Funktionen erforschen/Die Scheitelpunktform: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
K (Textersetzung - „Kategorie:Learning-App“ durch „Kategorie:LearningApps“)
(A1 doppelt, A2 aktualisiert)
Markierung: 2017-Quelltext-Bearbeitung
Zeile 12: Zeile 12:
{{Box
{{Box
|Aufgabe 1
|Aufgabe 1
|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 9)''' [[Datei:Notepad-117597.svg|right|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 9)''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].


Finde Werte für a, d und e, so dass <math>f(x)</math> die Kurve auf dem Bild möglichst gut beschreibt. Entscheide dich für drei Hintergrundbilder deiner Wahl und notiere den Funktionsterm in deinem Hefter. Wenn du noch weiter arbeiten möchtest, kannst du auch einige der übrigen Hintergundbilder bearbeiten.
Finde Werte für a, d und e, so dass <math>f(x)</math> die Kurve auf dem Bild möglichst gut beschreibt. Entscheide dich für drei Hintergrundbilder deiner Wahl und notiere den Funktionsterm in deinem Hefter. Wenn du noch weiter arbeiten möchtest, kannst du auch einige der übrigen Hintergundbilder bearbeiten.
Zeile 45: Zeile 45:
|Arbeitsmethode
|Arbeitsmethode
}}
}}
<div class="box arbeitsmethode">
== Aufgabe 1 ==
'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 9)''' [[Datei:Notepad-117597.svg|right|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
Finde Werte für a, d und e, so dass <math>f(x)</math> die Kurve auf dem Bild möglichst gut beschreibt. Entscheide dich für drei Hintergrundbilder deiner Wahl und notiere den Funktionsterm in deinem Hefter. Wenn du noch weiter arbeiten möchtest, kannst du auch einige der übrigen Hintergundbilder bearbeiten.
<ggb_applet width="100%" height="610" version="4.2" showMenuBar="true" showResetIcon="true" id="cDyjWjkp" />
<div class="mw-collapsible mw-collapsed" data-expandtext="Lösungsvorschläge anzeigen" data-collapsetext="Lösungsvorschläge verbergen">
Da es nicht die eine richtige Lösung gibt, findest du in der Tabelle Lösungsvorschläge sowie Spielräume, in denen die Parameter liegen können, um den Verlauf angemessen zu beschreiben.
{| class="wikitable"
|-
! Hintergrundbild!! Lösungsvorschlag !! Parameter a !! Parameter d !! Parameter e
|-
| Angry Birds || <math>f(x)=-0.13(x-7)^2+4.85</math> || -0.15 ≤ a ≤ -0.13 || 6.80 ≤ d ≤ 7.20 || 4.70 ≤ e ≤ 5.00
|-
| Golden Gate Bridge || <math>f(x)=0.04(x-5.7)^2+1</math> || 0.03 ≤ a ≤ 0.05 || 5.00 ≤ d ≤ 6.40 || 0.80 ≤ e ≤ 1.10
|-
| Springbrunnen || <math>f(x)=-0.33(x-4,85)^2+5.3</math> || -0.40 ≤ a ≤ -0.30 || 4.70 ≤ d ≤ 5.00 || 5.10 ≤ e ≤ 5.50
|-
| Elbphilharmonie (Bogen links) || <math>f(x)=0.40(x-2,50)^2+4.35</math> || 0.33 ≤ a ≤ 0.47 || 2.40 ≤ d ≤ 2.60 || 4.25 ≤ e ≤ 4.40
|-
| Elbphilharmonie (Bogen mitte) || <math>f(x)=0.33(x-5.85)^2+3.4</math> || 0.30 ≤ a ≤ 0.36 || 5.70 ≤ d ≤ 6.00 || 3.20 ≤ e ≤ 3.60
|-
| Elbphilharmonie (Bogen rechts) || <math>f(x)=0.22(x-9,40)^2+3.60</math> || 0.18 ≤ a ≤ 0.27 || 9.30 ≤ d ≤ 9.50 || 3.55 ≤ e ≤ 3.65
|-
| Gebirgsformation || <math>f(x)=-0.2(x-5.4)^2+2.3</math> || -0.30 ≤ a ≤ -0.10 || 5.10 ≤ d ≤ 5.70 || 2.10 ≤ e ≤ 2.50
|-
| Motorrad-Stunt || <math>f(x)=-0.07(x-7.7)^2+5.95</math> || -0.10 ≤ a ≤ -0.04 || 7.30 ≤ d ≤ 8.10 || 5.70 ≤ e ≤ 6.20
|-
| Basketball || <math>f(x)=-0.32(x-6.5)^2+6.45</math> || -0.35 ≤ a ≤ -0.29 || 6.20 ≤ d ≤ 6.80 || 6.20 ≤ e ≤ 6.70
|}
</div></div>




{{Box
{{Box
|Aufgabe 2
|Aufgabe 2
|'''Für diese Aufgabe benötigst du deinen Hefter (Merkliste, S. 3)''' [[Datei:Notepad-117597.svg|40px|right|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
|'''Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 3)''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].


Denke dir eine quadratische Funktion in Scheitelpunktform aus. Notiere den Term und fertige eine Skizze des Funktionsgraphen im Koordinatensystem an. Zur Kontrolle kannst du das oben stehende GeoGebra-Applet nutzen.
'''a)''' Lies dir den folgenden Merksatz aufmerksam durch.
 
'''b)''' Als Beispiel ist bei dem Merksatz im Hefter der Funktionsterm <math>y=0,5(x+1)^2-2</math> einer quadratischen Funktion in Scheitelpunktform gegeben. Skizziere den zugehörigen Graphen in das Koordinatensystem.
{{Lösung versteckt|[[Datei:SPF Aufg2-Lösung.png|rahmenlos|300px|Lernpfad QF erkunden/erforschen, Kapitel SPF]]|Lösung|versteckt}}
|Arbeitsmethode
|Arbeitsmethode
}}
}}
{{Box
{{Box
|Merke
|Merke

Version vom 24. Januar 2019, 09:54 Uhr

In diesem Kapitel des Lernpfads wirst du Experte für die Scheitelpunktform quadratischer Funktionen. Du kannst

  1. selbstständig mithilfe der vorliegenden Applets reale Flugkurven, Gebäude oder Phänomene aus der Natur modellieren,
  2. in einem Zuordnungsquiz selbst überprüfen, ob du alles verstanden hast, und
  3. abschließend in Partnerarbeit Flugkurven in verschiedenen Sportarten untersuchen.

Aufgabe 1

Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 9) Notizblock mit Bleistift.

Finde Werte für a, d und e, so dass die Kurve auf dem Bild möglichst gut beschreibt. Entscheide dich für drei Hintergrundbilder deiner Wahl und notiere den Funktionsterm in deinem Hefter. Wenn du noch weiter arbeiten möchtest, kannst du auch einige der übrigen Hintergundbilder bearbeiten.

GeoGebra

Da es nicht die eine richtige Lösung gibt, findest du in der Tabelle Lösungsvorschläge sowie Spielräume, in denen die Parameter liegen können, um den Verlauf angemessen zu beschreiben.

Hintergrundbild Lösungsvorschlag Parameter a Parameter d Parameter e
Angry Birds -0.15 ≤ a ≤ -0.13 6.80 ≤ d ≤ 7.20 4.70 ≤ e ≤ 5.00
Golden Gate Bridge 0.03 ≤ a ≤ 0.05 5.00 ≤ d ≤ 6.40 0.80 ≤ e ≤ 1.10
Springbrunnen -0.40 ≤ a ≤ -0.30 4.70 ≤ d ≤ 5.00 5.10 ≤ e ≤ 5.50
Elbphilharmonie (Bogen links) 0.33 ≤ a ≤ 0.47 2.40 ≤ d ≤ 2.60 4.25 ≤ e ≤ 4.40
Elbphilharmonie (Bogen mitte) 0.30 ≤ a ≤ 0.36 5.70 ≤ d ≤ 6.00 3.20 ≤ e ≤ 3.60
Elbphilharmonie (Bogen rechts) 0.18 ≤ a ≤ 0.27 9.30 ≤ d ≤ 9.50 3.55 ≤ e ≤ 3.65
Gebirgsformation -0.30 ≤ a ≤ -0.10 5.10 ≤ d ≤ 5.70 2.10 ≤ e ≤ 2.50
Motorrad-Stunt -0.10 ≤ a ≤ -0.04 7.30 ≤ d ≤ 8.10 5.70 ≤ e ≤ 6.20
Basketball -0.35 ≤ a ≤ -0.29 6.20 ≤ d ≤ 6.80 6.20 ≤ e ≤ 6.70


Aufgabe 2

Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 3) Notizblock mit Bleistift.

a) Lies dir den folgenden Merksatz aufmerksam durch.

b) Als Beispiel ist bei dem Merksatz im Hefter der Funktionsterm einer quadratischen Funktion in Scheitelpunktform gegeben. Skizziere den zugehörigen Graphen in das Koordinatensystem.

Lernpfad QF erkunden/erforschen, Kapitel SPF

Merke

Terme quadratischer Funktionen können in der Form angegeben werden (wobei a ≠ 0). Diese Darstellungsform nennt man Scheitelpunktform, da sich direkt aus dem Term der Scheitelpunkt ablesen lässt. Er hat die Koordinaten .

Aufgabe 3

Das folgende Quiz beschäftigt sich mit dem Wechsel zwischen verschiedenen Darstellungsarten (Funktionsterm, Graph und Situationen) quadratischer Funktionen. Hier kannst du dir für die drei Darstellungsarten zum Thema Basketball ein Beispiel anzeigen lassen.

Quadratische Funktionen beim Basketball.png


a) Beantworte die Fragen bitte selbstständig. Es ist jeweils genau eine Antwort richtig.



b) Die Lösungsübersicht am Ende verrät dir, wie viel Prozent du erreicht hast. Wenn du dich noch nicht sicher genug im Umgang mit den verschiedenen Darstellungsarten fühlst, kannst du das Quiz gerne erneut durchführen.

Aufgabe 4
Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 9) und einen Partner
Notizblock mit Bleistift
Partnerarbeit
.

a) Überlege dir - ohne deinem Partner zu verraten - eine Sportart, bei der die Flugkurve eines Balls (oder eines ähnlichen Sportutensils) durch eine quadratische Funktion näherungsweise modelliert werden kann. Notiere den Term (sowie die Maßeinheit) in deinem Hefter. Zur Visualisierung kannst du das untenstehende GeoGebra-Applet nutzen.

Der folgende vierschrittige Lösungsplan kann dir helfen zu einer guten Funktion zu gelangen.

  1. Stelle dir deine ausgewählte Sportart genau vor. Wie weit und wie hoch fliegt z.B. der Ball? Wo findet ein Abschlag o.ä. statt und wo landet der Ball? Eine beschriftete Skizze kann dir helfen.
  2. Was bedeuten die realen Annamhmen für deine Funktion? Wo liegen die Schnittpunkte und der Scheitelpunkt?
  3. Finde mithilfe von Rechnungen oder des GeoGebra-Applets geeignete Parameter für deine Funktion. Notiere dann den Funktionsterm.

4. Überlege, ob deine Funktionsgleichung wirklich geeignet ist, um die Flugkurve deiner im 1. Schritt gewählten Sportart zu modellieren.


b) Tausche nun deinen Term mit deinem Partner aus. Überlege, welche Sportart durch den Funktionsterm beschrieben werden könnte. Zur Hilfe kannst du erneut das GeoGebra-Applet oder die Hilfe nutzen.

c) Vergleicht, inwieweit ihr die von eurem Partner gemeinte Sportart erkannt habt. Diskutiert warum die Terme genau diese Sportarten beschreiben beziehungsweise inwiefern die Terme nicht eindeutig sind.

GeoGebra


Erstellt von: --Carsten (Diskussion) 15:24, 5. Nov. 2016 (CET)

Bearbeitet von: Elena Jedtke (Diskussion)