Quadratische Funktionen erforschen/Die Normalform: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Elena Jedtke
KKeine Bearbeitungszusammenfassung
Main>Elena Jedtke
KKeine Bearbeitungszusammenfassung
Zeile 15: Zeile 15:
{{Aufgaben|1|
{{Aufgaben|1|


'''Für diese Aufgabe benötigst du deinen Hefter (S. 13) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 13) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].


[[Datei:Anhalteweg.png|rahmenlos|zentriert|500px|Skizze Anhalteweg]]
[[Datei:Anhalteweg.png|rahmenlos|zentriert|500px|Skizze Anhalteweg]]
Zeile 61: Zeile 61:




{{Aufgaben|4|'''Für diese Aufgabe benötigst du deinen Hefter (S. 14) und einen Partner''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]] [[Datei:Puzzle-1020221 640.jpg|125px|rahmenlos|Partnerarbeit]].
{{Aufgaben|4|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 14) und einen Partner''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]] [[Datei:Puzzle-1020221 640.jpg|125px|rahmenlos|Partnerarbeit]].


'''a)''' Finde Werte für a, b und c, so dass <math>f(x)</math> die Kurve auf dem Bild möglichst gut beschreibt. Entscheide dich für drei Hintergrundbilder deiner Wahl und notiere den Funktionsterm in deinem Hefter. Wenn du noch weiter arbeiten möchtest, kannst du auch einige der übrigen Hintergundbilder bearbeiten.
'''a)''' Finde Werte für a, b und c, so dass <math>f(x)</math> die Kurve auf dem Bild möglichst gut beschreibt. Entscheide dich für drei Hintergrundbilder deiner Wahl und notiere den Funktionsterm in deinem Hefter. Wenn du noch weiter arbeiten möchtest, kannst du auch einige der übrigen Hintergundbilder bearbeiten.

Version vom 5. September 2017, 07:56 Uhr


In diesem Kapitel wirst du Experte für die Normalform quadratischer Funktionen. Bisher hast du quadratische Funktionen in der Scheitelpunktform kennengelernt. In Anwendungen wird jedoch häufig diese andere Variante quadratischer Funktionen genutzt. In diesem Kapitel

1. lernst du eine Anwendungsbeispiel aus der Fahrschule kennen,

2. erfährst, wie Terme quadratischer Funktionen in Normalform aussehen und

3. du lernst in einem Quiz und einer Partnerarbeit Eigenschaften und Besonderheiten der Normalform näher kennen.


Aufgabe 1
{{{2}}}


Aufgabe 2

Für diese Aufgabe benötigst du deinen Hefter (Merkliste, S. 5) Notizblock mit Bleistift.

Denke dir eine quadratische Funktion in Normalform aus. Notiere den Term und fertige eine Skizze des Funktionsgraphen an. Zur Kontrolle kannst du das unten stehende GeoGebra-Applet nutzen.


Merke
Terme quadratischer Funktionen können in der Form (mit a ≠ 0) beschrieben werden. Diese Darstellungsform nennt man Normalform. In der Normalform quadratischer Funktionen kann der y-Achsenabschnitt c direkt abgelesen werden.



Aufgabe 3

Das folgende Quiz beschäftigt sich mit dem Wechsel zwischen verschiedenen Darstellungsarten (Funktionsterm, Graph und Tabelle) quadratischer Funktionen.

Löse das folgende Quiz, indem du immer zwei Karten zu einem Paar zusammenfügst.


Aufgabe 4

- ! Hintergrundbild!! Lösungsvorschlag !! Parameter a !! Parameter b !! Parameter c




Pfeil Hier geht's weiter.png





Erstellt von: Elena Jedtke (Diskussion)