Quadratische Funktionen erforschen/Die Parameter der Scheitelpunktform: Unterschied zwischen den Versionen
Main>Elena Jedtke Keine Bearbeitungszusammenfassung |
Main>Elena Jedtke KKeine Bearbeitungszusammenfassung |
||
Zeile 83: | Zeile 83: | ||
'''Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 2) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]]. | '''Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 2) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]]. | ||
Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.}} | |||
{{Merke-blau| | {{Merke-blau| | ||
Multipliziert man <math>y=x^2</math> mit einem Faktor a, wird die Parabel '''gestreckt, gestaucht''' und/oder '''gespiegelt'''. <math>y=ax^2</math> (mit a≠0) ergibt demnach für: | Multipliziert man <math>y=x^2</math> mit einem Faktor a, wird die Parabel '''gestreckt, gestaucht''' und/oder '''gespiegelt'''. <math>y=ax^2</math> (mit a≠0) ergibt demnach für: | ||
Zeile 154: | Zeile 154: | ||
'''Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 2) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]]. | '''Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 2) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]]. | ||
Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.}} | |||
Addiert oder subtrahiert man eine Zahl d von x vor dem Quadrieren, so wird die Parabel '''entlang der x-Achse verschoben'''. Für <math>y=(x-d)^2</math> gilt: | {{Merke-blau|Addiert oder subtrahiert man eine Zahl d von x vor dem Quadrieren, so wird die Parabel '''entlang der x-Achse verschoben'''. Für <math>y=(x-d)^2</math> gilt: | ||
'''d > 0''': Die Parabel wird entlang der x-Achse nach rechts verschoben. | '''d > 0''': Die Parabel wird entlang der x-Achse nach rechts verschoben. | ||
Zeile 217: | Zeile 217: | ||
'''Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 3) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]]. | '''Für diese Aufgabe benötigst du deinen Hefter (Merksätze, S. 3) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]]. | ||
Lies dir den folgenden Merksatz aufmerksam durch. Ergänze ihn durch beispielhafte Funktionsterme.}} | |||
{{Merke-blau| | {{Merke-blau| | ||
Addiert oder subtrahiert man eine Zahl e von <math>y=x^2</math>, wird die Parabel '''entlang der y-Achse verschoben'''. Für <math>y=x^2+e</math> gilt: | Addiert oder subtrahiert man eine Zahl e von <math>y=x^2</math>, wird die Parabel '''entlang der y-Achse verschoben'''. Für <math>y=x^2+e</math> gilt: |
Version vom 19. April 2018, 11:41 Uhr
In diesem Kapitel lernst du ganz unterschiedlich aussehende Parabeln kennen. Du wirst
Mit diesem Wissen kannst du dann selbst verschiedene Parabeln darstellen und beschreiben. |
Quadratische Funktionen verändern
Wenn du dir die Bilder von der Seite Quadratische Funktionen im Alltag noch einmal anschaust, dann fällt auf, dass die abgebildeten Parabeln anders aussehen als die gerade kennengelernte Normalparabel. In der Natur und in Anwendungen wird der Funktionsterm der Normalparabel (y = x2) variiert und es entstehen die unterschiedlichsten Parabeln.
Eine Anwendung wird dir im folgenden Video gezeigt. Das Deutsche Zentrum für Luft- und Raumfahrt (DLR) führt seit einigen Jahren Parabelflüge durch.
Vorlage:Video Video: Parabelflug des DLR
Durch unterschiedliche Parabelflüge wird die Schwerkraft, die auf dem Mond bzw. auf dem Mars herrscht, nachempfunden. In der Vorlage:Pdf-extern des DLR kannst du dir die zu fliegenden Parabeln auf Seite 16 (31) angucken.
Strecken, Stauchen und Spiegeln
Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 4) .
Was passiert, wenn man statt der Funktion folgende Funktionen gegeben hat:
- (1) , (2) und (3) ?
a) Notiere Vermutungen darüber, wie die Graphen der Funktionen (1), (2) und (3) aussehen (ohne diese zu zeichnen!).
b) Zeichne die drei Graphen in ein Koordinatensystem und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?
In dem Applet ist die Normalparabel, die du auf der letzten Seite des Lernpfades kennengelernt hast, als Funktion eingezeichnet. Du kannst den Schieberegler a betätigen und dadurch den Graph von verändern. Was passiert?
In dem folgenden Lückentext werden die Erkenntnisse, die du aus Aufgabe 1 mitnehmen konntest, noch einmal ausformuliert. Füge die fehlenden Begriffe und Zahlen in die Lücken.
Knobelaufgabe
Tipp: Wenn du die Kärtchen mit den Graphen anklickst, werden sie dir vergrößert angezeigt.
Verschiebung in x-Richtung
Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 5) .
Was passiert, wenn man statt der Funktion folgende Funktionen gegeben hat:
- (1) (2) ?
a) Notiere Vermutungen darüber, wie die Graphen der Funktionen (1) und (2) aussehen (ohne diese zu zeichnen!).
b) Zeichne die beiden Graphen in ein Koordinatensystem und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?
In dem Applet ist die Normalparabel, die du auf der letzten Seite des Lernpfades kennengelernt hast, eingezeichnet. Du kannst den Schieberegler d betätigen und dadurch den Graph verändern.
Verschiebung in y-Richtung
Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 6) .
Was passiert, wenn man statt der Funktion folgende Funktionen gegeben hat:
- (1) (2) ?
a) Notiere Vermutungen darüber, wie die Graphen der Funktionen (1) und (2) aussehen (ohne diese zu zeichnen!).
b) Zeichne die beiden Graphen in ein Koordinatensystem und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?
In dem Applet ist die Normalparabel, die du auf der letzten Seite des Lernpfades kennengelernt hast, eingezeichnet. Du kannst den Schieberegler e betätigen und dadurch den Graph verändern.
Zusammenfassung der wichtigsten Inhalte
Hier sind die Merksätze, die dir auf dieser Seite begegnet sind noch einmal gesammelt dargestellt: |
Die auf dieser Seite gewonnen Erkenntnisse können kombiniert werden und ergeben quadratische Funktion der Form . Diese Form heißt Scheitelpunktform, da die Parameter d und e die Koordinaten des Scheitelpunktes der Parabel angeben.
Auf der nächsten Seite lernst du diese Variante quadratischer Funktionen genauer kennen. Außerdem befinden sich noch weitere Übungsaufgaben in dem Kapitel Übungen.
Erstellt von: Elena Jedtke (Diskussion)