Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
K (227 Versionen importiert)
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
{{Potenzfunktionen}}
{{Navigation verstecken|{{Lernpfad Potenzfunktionen}}|Lernschritte einblenden|Lernschritte ausblenden}}
 
__NOTOC__


'''Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen (positiven) Stammbruch der Form <math>\textstyle \frac{1}{n}</math> mit <math>n \in \mathbb{N}^*</math> als Exponenten haben.'''  
'''Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen (positiven) Stammbruch der Form <math>\textstyle \frac{1}{n}</math> mit <math>n \in \mathbb{N}^*</math> als Exponenten haben.'''  
Zeile 8: Zeile 8:
=== Funktionsgraph kennenlernen ===
=== Funktionsgraph kennenlernen ===


{| cellspacing="10"
{{Box|1=Aufgabe 1|2=  
|- style="vertical-align:top;"
| {{Arbeiten|NUMMER=1|ARBEIT=  
Rechts siehst Du den Graphen der Funktion <math>f(x)=x^{\frac 1 n}</math> für <math>n \in \{2,3,4,5,6\}</math>.<br />
Rechts siehst Du den Graphen der Funktion <math>f(x)=x^{\frac 1 n}</math> für <math>n \in \{2,3,4,5,6\}</math>.<br />
# Beschreibe den Graphen und achte dabei auf
# Beschreibe den Graphen und achte dabei auf
Zeile 17: Zeile 15:
#* größte und kleinste Funktionswerte
#* größte und kleinste Funktionswerte
# Gibt es Punkte, die allen Graphen dieser Bauart gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen. <br> <pre>HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen </pre>
# Gibt es Punkte, die allen Graphen dieser Bauart gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen. <br> <pre>HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen </pre>
:{{Lösung versteckt|
 
<ggb_applet height="450" width="900" showMenuBar="false" showResetIcon="true" id="vmtmy9jg" />
 
{{Lösung versteckt|
: zu 1) Der Definitionsbereich ist IR<sup>+</sup><sub>0</sub>. Der kleinste Funktionswert y<math>=</math>0 wird für x<math>=</math>0 angenommen; von da aus steigen die blauen Graphen streng monoton über alle Grenzen an.
: zu 1) Der Definitionsbereich ist IR<sup>+</sup><sub>0</sub>. Der kleinste Funktionswert y<math>=</math>0 wird für x<math>=</math>0 angenommen; von da aus steigen die blauen Graphen streng monoton über alle Grenzen an.
: zu 2) Man findet die Punkte (0;0) und (1;1) unabhängig von n in allen Graphen. '''Begründung:''' Es gilt 0<sup>r</sup> <math>=</math>0 und 1<sup>r</sup> <math>=</math>1 für alle <math>r \in \mathbb{R}\backslash\{0 \}</math>.
: zu 2) Man findet die Punkte (0;0) und (1;1) unabhängig von n in allen Graphen. '''Begründung:''' Es gilt 0<sup>r</sup> <math>=</math>0 und 1<sup>r</sup> <math>=</math>1 für alle <math>r \in \mathbb{R}\backslash\{0 \}</math>.
}}
}}
}}<br>
|3=Arbeitsmethode}}
|| <ggb_applet height="300" width="350" showMenuBar="false" showResetIcon="true"
filename="Woerler_001b.ggb" />
|}


=== Vergleich mit Funktionen aus Stufe 2 ===
=== Vergleich mit Funktionen aus Stufe 2 ===


{| cellspacing="10"
{{Box|1=Aufgabe 2|2=  
|- style="vertical-align:top;"
| {{Arbeiten|NUMMER=2|ARBEIT=  
Verleiche den neuen Graphen (blau) mit dem, den Du schon aus Stufe 1 und 2 dieses Kurses kennst (rot strichliert); mit dem Schieberegler kannst Du dazu wieder die Exponenten verändern.  
Verleiche den neuen Graphen (blau) mit dem, den Du schon aus Stufe 1 und 2 dieses Kurses kennst (rot strichliert); mit dem Schieberegler kannst Du dazu wieder die Exponenten verändern.  
# Beschreibe Gemeinsamkeiten und Unterschiede der Graphen! Achte dabei auf
# Beschreibe Gemeinsamkeiten und Unterschiede der Graphen! Achte dabei auf
Zeile 38: Zeile 34:
#* größte und kleinste Funktionswerte
#* größte und kleinste Funktionswerte
# Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen. <br> <pre>HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen </pre>
# Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen. <br> <pre>HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen </pre>
:{{Lösung versteckt|
 
<ggb_applet height="450" width="900" showMenuBar="false" showResetIcon="true" id="weqjncvn" />
 
{{Lösung versteckt|
: zu 1) Der Definitionsbereich der blauen Graphen ist nicht-negativ. Der kleinste Funktionswert y<math>=</math>0 wird für x<math>=</math>0 angenommen; von da aus steigen die blauen Graphen steng monoton an.
: zu 1) Der Definitionsbereich der blauen Graphen ist nicht-negativ. Der kleinste Funktionswert y<math>=</math>0 wird für x<math>=</math>0 angenommen; von da aus steigen die blauen Graphen steng monoton an.
: zu 2) Man findet die Punkte (0;0) und (1;1) in allen blauen Graphen. Begründung: Es gilt stets 1<sup>r</sup> <math>=</math>1 für alle <math>r \in \mathbb{R}\setminus\{0\}</math>.
: zu 2) Man findet die Punkte (0;0) und (1;1) in allen blauen Graphen. Begründung: Es gilt stets 1<sup>r</sup> <math>=</math>1 für alle <math>r \in \mathbb{R}\setminus\{0\}</math>.
}}
}}
}}<br>
|3=Arbeitsmethode}}
|| <ggb_applet height="350" width="350" showMenuBar="false" showResetIcon="true"
filename="Woerler_001.ggb" />
|}
<!--
neue Datei {{ggb|Woerler_001.ggb|datei}}-->


== Bezeichungen: Potenzen und Wurzeln ==
== Bezeichungen: Potenzen und Wurzeln ==


Wir betrachten hier Potenzfunktionen mit <math>f(x)=x^{\frac 1 n}</math> , <math>n \in \mathbb{N}^*.</math>
Wir betrachten hier Potenzfunktionen mit <math>f(x)=x^{\frac 1 n}</math> , <math>n \in \mathbb{N}^*.</math>
{{Merksatz|MERK= Wegen <math>x^{\frac{1}{n}}:=\sqrt[n]{x}</math> nennt man diese Funktionen auch ''Wurzelfunktionen''. Ihr Definitionsbereich ist  (wie die Aufgaben 1 und 2 gezeigt haben) IR<sup>+</sup><sub>0</sub>. Beschränkt man sich auf diesen Definitonsbereich, dann ist die n-te Wurzelfunktion f mit <math>f(x)=x^{\frac 1 n}</math> die Umkehrfunktion zur Potenzfunktion g der Bauart g(x)<math>=</math> x<sup>n</sup> und g die Umkehrfunktion zu f (Näheres zur ''Umkehrfunktion'' siehe [[Potenzfunktionen_4._Stufe#Potenzfunktionen_und_ihre_Umkehrfunktionen | nächstes Kapitel]]).
 
{{Box|1=Merke|2= Wegen <math>x^{\frac{1}{n}}:=\sqrt[n]{x}</math> nennt man diese Funktionen auch ''Wurzelfunktionen''. Ihr Definitionsbereich ist  (wie die Aufgaben 1 und 2 gezeigt haben) IR<sup>+</sup><sub>0</sub>. Beschränkt man sich auf diesen Definitonsbereich, dann ist die n-te Wurzelfunktion f mit <math>f(x)=x^{\frac 1 n}</math> die Umkehrfunktion zur Potenzfunktion g der Bauart g(x)<math>=</math> x<sup>n</sup> und g die Umkehrfunktion zu f (Näheres zur ''Umkehrfunktion'' siehe [[Potenzfunktionen_4._Stufe#Potenzfunktionen_und_ihre_Umkehrfunktionen | nächstes Kapitel]]).


Im Falle n<math>=</math>2 nennt man die Wurzel "''Quadratwurzel''" und man schreibt:
Im Falle n<math>=</math>2 nennt man die Wurzel "''Quadratwurzel''" und man schreibt:
Zeile 58: Zeile 53:


Im Falle n<math>=</math>3 nennt man die Wurzel "''Kubikwurzel''", i. Z.: <font style="vertical-align:27%;"><math>x^{\frac{1}{3}}</math></font> bzw. <math>\sqrt[3]{x}</math>.  
Im Falle n<math>=</math>3 nennt man die Wurzel "''Kubikwurzel''", i. Z.: <font style="vertical-align:27%;"><math>x^{\frac{1}{3}}</math></font> bzw. <math>\sqrt[3]{x}</math>.  
}}
|3=Merksatz}}


Den Grund für diese Bezeichnungen zeigen die folgenden Beispiele:
Den Grund für diese Bezeichnungen zeigen die folgenden Beispiele:
Zeile 65: Zeile 60:
=== Beispiel: Quadratwurzeln ===
=== Beispiel: Quadratwurzeln ===


{| border="0" width="100%" cellspacing="0"
[[Datei:Diagonale_Potenzfunktionen.jpg|right|165px]]
! height="0" |
|
|- valign="top"
|  
Beispielsweise ergibt sich die Länge der '''Diagonalen B in einem Quadrat''' der Seitenlänge a<math>=</math>1 über den Satz des Pythagoras <math>\left( a^2 \!\,+ a^2 = B^2 \right)</math> zu:
Beispielsweise ergibt sich die Länge der '''Diagonalen B in einem Quadrat''' der Seitenlänge a<math>=</math>1 über den Satz des Pythagoras <math>\left( a^2 \!\,+ a^2 = B^2 \right)</math> zu:
:<math>a^2 + a^2 = 2 \cdot a^2 = 2 \cdot 1^2 = 2 =B^2 \quad \Rightarrow</math> <math>\quad B = \pm \sqrt{2} = \pm 2^{\frac 1 2}.</math>
:<math>a^2 + a^2 = 2 \cdot a^2 = 2 \cdot 1^2 = 2 =B^2 \quad \Rightarrow</math> <math>\quad B = \pm \sqrt{2} = \pm 2^{\frac 1 2}.</math>
Die Lösung <font style="vertical-align:15%;"><math>\textstyle d=-\sqrt{2}</math></font> ergibt hier keinen Sinn, da wir nur Längen in der realen Welt betrachten.
Die Lösung <font style="vertical-align:15%;"><math>\textstyle d=-\sqrt{2}</math></font> ergibt hier keinen Sinn, da wir nur Längen in der realen Welt betrachten.
! width="300" | [[Bild:diagonale.png|right|165px]]  
 
|- valign="top"
[[Bild:diagonale3.jpg|right|170px]]
| Auch die Länge der '''Raumdiagonale C im Einheitswürfel''' (das ist ein Würfel mit der Kantenlänge a=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: <math>B^2 + \!\,a^2 = C^2</math>) zu:
Auch die Länge der '''Raumdiagonale C im Einheitswürfel''' (das ist ein Würfel mit der Kantenlänge a=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: <math>B^2 + \!\,a^2 = C^2</math>) zu:
:<math>\sqrt{2}^2 + 1^2 = 2 + 1 = 3 = C^2 \quad \Rightarrow</math> <math> \quad C = \pm \sqrt{3} = \pm 3^{\frac 1 2}.</math>
:<math>\sqrt{2}^2 + 1^2 = 2 + 1 = 3 = C^2 \quad \Rightarrow</math> <math> \quad C = \pm \sqrt{3} = \pm 3^{\frac 1 2}.</math>
Die Lösung ist also <font style="vertical-align:15%;"><math>\textstyle C = \sqrt{3}</math></font> angeben.
Die Lösung ist also <font style="vertical-align:15%;"><math>\textstyle C = \sqrt{3}</math></font> angeben.
| [[Bild:diagonale3.png|right|170px]]
 
|}
 
 
=== Beispiel: Kubikwurzel ===
=== Beispiel: Kubikwurzel ===


Zeile 90: Zeile 82:
== Einfluss von Parametern ==
== Einfluss von Parametern ==


<ggb_applet height="400" width="600" showMenuBar="false" showResetIcon="true"
filename="8_ax1nc_w.ggb" />


{{Arbeiten|NUMMER=3|ARBEIT=  
{{Box|1=Aufgabe 3|2=  
In obenstehendem Applet kannst Du die Parameter a und c mit den Schiebereglern verändern.<br />
Im Applet kannst Du die Parameter a und c mit den Schiebereglern verändern.<br />
# Wie beeinflusst der Parameter a die Lage des Graphen?
# Wie beeinflusst der Parameter a die Lage des Graphen?
# Wie beeinflusst der Parameter c die Lage des Graphen?
# Wie beeinflusst der Parameter c die Lage des Graphen?
:{{Lösung versteckt|
 
<ggb_applet height="450" width="800" showMenuBar="false" showResetIcon="true" id="fwtzatzv" />
 
{{Lösung versteckt|
: zu 1.) Der Parameter a bewirkt für a>1 eine Streckung des Graphen in y-Richtung, für 0<a<1 eine Stauchung in y-Richtung; für a<math>=</math>0 erhält man eine konstante Funktion mit f(x)<math>=</math>c. Wird a negativ, so wird f zu einer monoton fallenden Funktion.<br />zu 2.) Der Parameter c bewirkt eine Verschiebung des kompletten Graphen in y-Richung, da zu jedem Funktionswert y der Wert c addiert wird.
: zu 1.) Der Parameter a bewirkt für a>1 eine Streckung des Graphen in y-Richtung, für 0<a<1 eine Stauchung in y-Richtung; für a<math>=</math>0 erhält man eine konstante Funktion mit f(x)<math>=</math>c. Wird a negativ, so wird f zu einer monoton fallenden Funktion.<br />zu 2.) Der Parameter c bewirkt eine Verschiebung des kompletten Graphen in y-Richung, da zu jedem Funktionswert y der Wert c addiert wird.
}}<br>
}}<br>
}}
|3=Arbeitsmethode}}


<!--{{ggb|8_ax1nc_w.ggb|Datei hochladen}}-->


== *Zum Weiterdenken: Definitionsbereich der Wurzelfunktionen ==
== *Zum Weiterdenken: Definitionsbereich der Wurzelfunktionen ==
<small>(*Zusatzinformation, freilwillige Ergänzung)</small>
<small>(*Zusatzinformation, freilwillige Ergänzung)</small>
==== Einschränkung auf IR<sup>+</sup><sub>0</sub> ====
==== Einschränkung auf IR<sup>+</sup><sub>0</sub> ====


Zeile 123: Zeile 116:


----
----
{|border="0" cellspacing="0" cellpadding="4"
|align = "left" width="120"|[[Bild:Maehnrot.jpg|100px]]
|align = "left"|'''Als nächstes erfährst du etwas über Potenzfunktionen, die auch negative Stammbrüchen im Exponenten haben.'''<br />
[[Bild:Pfeil.gif]] &nbsp; [[Potenzfunktionen_4._Stufe|'''Hier geht es weiter''']]'''.'''


|}
'''Als nächstes erfährst du etwas über Potenzfunktionen, die auch negative Stammbrüchen im Exponenten haben.'''<br />
 
{{Weiter|Potenzfunktionen_-_4._Stufe|Weiter}}

Version vom 25. Oktober 2018, 13:42 Uhr


Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen (positiven) Stammbruch der Form mit als Exponenten haben.

Die Graphen der Funktionen f(x) = x1/n, n IN*

Funktionsgraph kennenlernen

Aufgabe 1

Rechts siehst Du den Graphen der Funktion für .

  1. Beschreibe den Graphen und achte dabei auf
    • Definitionsbereich
    • Monotonie
    • größte und kleinste Funktionswerte
  2. Gibt es Punkte, die allen Graphen dieser Bauart gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen.
    HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen 
GeoGebra
zu 1) Der Definitionsbereich ist IR+0. Der kleinste Funktionswert y0 wird für x0 angenommen; von da aus steigen die blauen Graphen streng monoton über alle Grenzen an.
zu 2) Man findet die Punkte (0;0) und (1;1) unabhängig von n in allen Graphen. Begründung: Es gilt 0r 0 und 1r 1 für alle .

Vergleich mit Funktionen aus Stufe 2

Aufgabe 2

Verleiche den neuen Graphen (blau) mit dem, den Du schon aus Stufe 1 und 2 dieses Kurses kennst (rot strichliert); mit dem Schieberegler kannst Du dazu wieder die Exponenten verändern.

  1. Beschreibe Gemeinsamkeiten und Unterschiede der Graphen! Achte dabei auf
    • Definitionsbereich
    • Symmetrie
    • Monotonie
    • größte und kleinste Funktionswerte
  2. Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen.
    HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen 
GeoGebra
zu 1) Der Definitionsbereich der blauen Graphen ist nicht-negativ. Der kleinste Funktionswert y0 wird für x0 angenommen; von da aus steigen die blauen Graphen steng monoton an.
zu 2) Man findet die Punkte (0;0) und (1;1) in allen blauen Graphen. Begründung: Es gilt stets 1r 1 für alle .

Bezeichungen: Potenzen und Wurzeln

Wir betrachten hier Potenzfunktionen mit ,

Merke

Wegen nennt man diese Funktionen auch Wurzelfunktionen. Ihr Definitionsbereich ist (wie die Aufgaben 1 und 2 gezeigt haben) IR+0. Beschränkt man sich auf diesen Definitonsbereich, dann ist die n-te Wurzelfunktion f mit die Umkehrfunktion zur Potenzfunktion g der Bauart g(x) xn und g die Umkehrfunktion zu f (Näheres zur Umkehrfunktion siehe nächstes Kapitel).

Im Falle n2 nennt man die Wurzel "Quadratwurzel" und man schreibt:

Im Falle n3 nennt man die Wurzel "Kubikwurzel", i. Z.: bzw. .

Den Grund für diese Bezeichnungen zeigen die folgenden Beispiele:


Beispiel: Quadratwurzeln

Diagonale Potenzfunktionen.jpg

Beispielsweise ergibt sich die Länge der Diagonalen B in einem Quadrat der Seitenlänge a1 über den Satz des Pythagoras zu:

Die Lösung ergibt hier keinen Sinn, da wir nur Längen in der realen Welt betrachten.

Diagonale3.jpg

Auch die Länge der Raumdiagonale C im Einheitswürfel (das ist ein Würfel mit der Kantenlänge a=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: ) zu:

Die Lösung ist also angeben.


Beispiel: Kubikwurzel

Das Volumen V eines Würfels (lat.: "cubus") der Kantenlänge s5 ergibt sich über:

Umgekehrt erhält man die Kantenlänge eines Würfels mit Volumen V27 durch ziehen der 3.-Wurzel:

Einfluss von Parametern

Aufgabe 3

Im Applet kannst Du die Parameter a und c mit den Schiebereglern verändern.

  1. Wie beeinflusst der Parameter a die Lage des Graphen?
  2. Wie beeinflusst der Parameter c die Lage des Graphen?
GeoGebra
zu 1.) Der Parameter a bewirkt für a>1 eine Streckung des Graphen in y-Richtung, für 0<a<1 eine Stauchung in y-Richtung; für a0 erhält man eine konstante Funktion mit f(x)c. Wird a negativ, so wird f zu einer monoton fallenden Funktion.
zu 2.) Der Parameter c bewirkt eine Verschiebung des kompletten Graphen in y-Richung, da zu jedem Funktionswert y der Wert c addiert wird.


*Zum Weiterdenken: Definitionsbereich der Wurzelfunktionen

(*Zusatzinformation, freilwillige Ergänzung)

Einschränkung auf IR+0

Gelegentlich findet man in Büchern oder auch im Internet folgende Darstellung:

Wegen

(-2)3 -8

erscheint das richtig zu sein, allerdings kann diese Festlegung zu Widersprüchen führen, wie das folgende Beispiel zeigt:


Um solche Fälle von Nicht-Eindeutigkeiten, aber auch um Fallunterscheidungen bei für gerade und ungerade n zu vermeiden, schränkt man den Definitionsbereich ID der Wurzelfunktionen grundsätzlich auf die nicht-negativen reellen Zahlen ein, also:

mit und



Als nächstes erfährst du etwas über Potenzfunktionen, die auch negative Stammbrüchen im Exponenten haben.