Beschreibende Statistik/Klassenbildung: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
main>Nina Krämer
main>Nina Krämer
Keine Bearbeitungszusammenfassung
Zeile 190: Zeile 190:


Hier geht's weiter zu [[/Klassen mit gleicher Klassenbreite|Klassen mit gleicher Klassenbreite]]
Hier geht's weiter zu [[/Klassen mit gleicher Klassenbreite|Klassen mit gleicher Klassenbreite]]
Oder direkt zu [[/Klassen mit unterschiedlicher Klassenbreite|Klassen mit unterchiedlicher Klassenbreite]]
<!-- Oder direkt zu [[../../Übungen Klassierte Daten|Übungen Klassenbildung]] -->
Oder [[../../|zurück zu Grundbegriffe der beschreibenden Statistik]]

Version vom 7. April 2015, 22:25 Uhr

Man kann jede Art von Merkmalen klassieren. Das geht sogar bei qualitativen Merkmalen mit einer Nominalskala.

Beispiel Merkmal Lieblingsfarbe
Sind zum Beispiel die Farben hellgelb, gelb, sonnengelb, rot, grün, hellblau, mittelblau, himmelblau und dunkelblau unter den Merkmalsausprägungen, so könnte man die Klassen
"gelb" mit den Merkmalsausprägungen hellgelb, gelb und sonnengelb,
"blau" mit den Merkmalsausprägungen hellblau, mittelblau, himmelblau und dunkelblau ,
"Andere" mit den verbliebenden Merkmalsausprägungen bilden.

Dies wird auch bei der Auswertung von Wahlergebnissen im Fernsehen gemacht, die kleineren, nicht so wichtigen Parteien werden unter "Andere" zusammengefasst.

Bei qualitativen Merkmalen mit einer Ordinalskala wird man immer darauf achten, dass aufeinander folgende Merkmalsausprägungen zusammengefasst werden.

Beispiel Merkmal Note Mathematikarbeit
Betrachtet man die Noten der letzten Mathematikarbeit, so könnte man die Klassen
"Leistungsträger" für die Merkmalsausprägungen "sehr gut" und "gut",
"Mittelfeld" für die Merkmalsausprägungen "befriedigend" und "ausreichend" und
"Blauer Brief" für die Merkmalsausprägungen "mangelhaft" und "ungenügend" bilden,

um eine knappe Übersicht über die Lerngruppe zu erhalten.

Im Folgenden werden aber nur noch quantitative Merkmale betrachtet.

Nicht immer macht es Sinn, alle verschiedenen Merkmalsausprägungen einzeln zu betrachten. Bei quantitativen Merkmalen fasst man oft verschiedene Merkmalsausprägungen zu Klassen zusammen.

Beispiel Körpergröße (in cm)

Betrachtet man zum Beispiel die Körpergröße (in cm) der Schüler und Schülerinnen der Klasse HHU5 am Berufskolleg Hattingen (Schuljahr 2012/2013):

Urliste
Körpergröße in cm
170 178 174 188 168
191 169 159 199 200
177 178 200 193 169
151 185 191 165 158
185 188 194 180 170


Wenn man hier die verschiedenen Merkmalsausprägungen mit ihren absoluten und relativen Häufigkeiten erfasst, ist noch nicht wirklich etwas gewonnen, da es 18 verschiedene Merkmalsausprägungen gibt, von denen sieben die absolute Häufigkeit 2 und alle anderen die absolute Häufigkeit 1 haben. (Der geneigte Leser mag das selber nachrechnen.)

Man könnte zum Beispiel die Frage "Wie viele Schüler sind größer als 175 cm und höchstens 183 cm? stellen.

Dann ist es sinnvoll, eine absolute Häufigkeitsverteilung mit drei verschiedenen Klassen zu bilden. Jede Klasse hat eine untere und eine obere Grenze. Wichtig ist, dass sich die Klassen nicht überschneiden, damit jeder Beobachtungswert nur genau zu einer Klasse gehört.

Klasseneinteilung:

Klasse :

vom kleinsten Wert (hier: 151 cm) bis zu 175 cm einschließlich
mathematische Kurzschreibweise:

Klasse :

von über 175 cm bis zu 183 cm einschließlich
mathematische Kurzschreibweise:

Klasse :

von über 183 cm bis zum größten Wert (hier 200 cm) einschließlich
mathematische Kurzschreibweise:

Häufigkeitsverteilung bestimmen:

Jetzt kann man die absolute Häufigkeit zu jeder Klasse bestimmen, indem man alle Beobachtungswerte zählt, die im Intervall der Klasse liegen. Dann lässt sich auch die relative Häufigkeit zu jeder Klasse bestimmen, indem man den Anteil aller Beobachtungswerte am Stichprobenumfang , die im Intervall der Klasse liegen, berechnet.

Klassierte Körpergrößen HHU5 2012/2013
Summe
Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle \frac{2}{5}=40 %} Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle \frac{4}{25}=16 %} Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle \frac{11}{25}=44 %} Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle 100 %}

Interpretation:

Es sind also nicht nur vier Schüler größer als 175 cm und höchstens 183 cm. Es sieht so aus, als wären die Schüler der Klasse entweder klein oder groß, weil die Klasse in der Mitte so selten vertreten ist.

Stimmt das denn?

Hier ist es hilfreich, sich mit den Klassenbreiten zu beschäftigen.

Klassenbreiten bestimmen:

Die gewählten Klassen sind unterschiedlich breit. Die Breite einer Klasse errechnet man, indem man die untere Grenze von der oberen Grenze subtrahiert.

Klasse untere Grenze obere Grenze Klassenbreite

Jetzt sieht man, dass die mittlere Klasse auch viel schmaler ist, als die beiden anderen Klassen. Die Klassenbreite hat aber Einfluss auf die Häufigkeit, mit der die Beobachtungswerte in der Klasse liegen. Deshalb wählt man in der Regel Klassen mit gleicher Klassenbreite. Nur in Ausnahmefällen machen Klassen mit unterschiedlichen Klassenbreiten Sinn. Ganz besonders gut geeignet sind unterschiedliche Klassenbreiten, wenn man schon vorher weiß, welche Aussage man mit den Daten unterstützen möchte.

Auch die obige Fragestellung hätte man prima mit gleich breiten Klassen lösen können. Dabei beginnt man dann mit dem aus der Frage vorgegebenen Intervall und bildet alle nötigen Klassen darunter und darüber mit Klassenbreite 8 cm so, dass man auch den kleinsten und den größten Beobachtungswert einer Klasse zuordnen kann.

Das sieht dann so aus:

Klassierte Körpergrößen HHU5 2012/2013
Klasse Intervall
Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle \frac{1}{25}=4 %}
Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle \frac{2}{25}=8 %}
Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle \frac{1}{25}=4 %}
Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle \frac{6}{25}=24 %}
Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle \frac{4}{25}=16 %}
Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle \frac{6}{25}=24 %}
Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle \frac{3}{25}=12 %}
Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle \frac{2}{25}=8 %}
Summe Fehler beim Parsen (Konvertierungsfehler. Der Server („cli“) hat berichtet: „[INVALID]“): {\displaystyle 100%}
Interpretation:

Man kann leicht erkennen, dass es - unter Berücksichtigung der Klassenbreite - nur zwei Klassen gibt, in denen sich mehr Beobachtungswerte befinden. So erhält man also ein ganz anderes Bild der Verteilung.


Merke
Wenn bei einer umfangreichen Stichprobe sehr viele unterschiedliche Merkmalsausprägungen auftreten, so bietet es sich an, ähnliche Werte in sogenannte Klassen der (Klassen-)Breite zusammenzufassen.


Man unterscheidet zwei Arten von Klassenbildungen:

  • Klassen mit gleicher Klassenbreite
    Klassen mit unterschiedlicher Klassenbreite

Übrigens eignen sich Klassen mit unterschiedlicher Klassenbreite hervorragend, um Daten so aufzubereiten, dass sie die gewünschte Aussage (hier entweder eine Klasse mit besonders großen Schülern oder mit besonders kleinen Schülern) gut unterstützen. Hier gilt der allseits beliebte Spruch: "Traue keiner Statistik, die du nicht selbst gefälscht hast."

Hier geht's weiter zu Klassen mit gleicher Klassenbreite


Oder direkt zu Klassen mit unterchiedlicher Klassenbreite



Oder [[../../|zurück zu Grundbegriffe der beschreibenden Statistik]]