Quadratische Funktionen erforschen/Von der Scheitelpunkt- zur Normalform: Unterschied zwischen den Versionen
K (14 Versionen importiert) |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 1: | Zeile 1: | ||
{{Quadratische Funktionen erforschen}} | {{Navigation verstecken|{{Quadratische Funktionen erforschen}}|Lernschritte einblenden|Lernschritte ausblenden}} | ||
__NOTOC__ | |||
{{Box| |In diesem Kapitel kannst du herausfinden, wie du quadratischen Funktionen in '''Scheitelpunktform''' in quadratische Funktionen in '''Normalform''' umwandeln kannst. |Kurzinfo}} | |||
==Beispiel== | |||
Für den Basketballwurf konnten näherungsweise diese beiden Funktionsterme gefunden werden: | Für den Basketballwurf konnten näherungsweise diese beiden Funktionsterme gefunden werden: | ||
{| | {| | ||
Zeile 57: | Zeile 45: | ||
Ein Blick auf das zweite Bild oben zeigt, dass das '''Ergebnis''' der Ausmultiplikation genau der '''Term in Normalform''' ist. | Ein Blick auf das zweite Bild oben zeigt, dass das '''Ergebnis''' der Ausmultiplikation genau der '''Term in Normalform''' ist. | ||
|} | |} | ||
<div class="box arbeitsmethode"> | |||
=== Aufgabe 1 === | |||
'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 15)''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]]. | |||
'''a)''' Lies dir das Beispiel oben durch und versuche es nachzuvollziehen. | '''a)''' Lies dir das Beispiel oben durch und versuche es nachzuvollziehen. | ||
'''b)''' Nimm deine Lösung zu der [[Quadratische Funktionen | '''b)''' Nimm deine Lösung zu der [[Mathematik-digital/Quadratische Funktionen erkunden/Die Scheitelpunktform|1. Aufgabe bei der Scheitelpunktform]] in deinen Hefter (S. 9) und wähle zwei deiner Terme aus. Multipliziere diese Funktionsterme wie im Beispiel aus und notiere deine Rechnung. | ||
'''c)''' Vergleiche die Ergebnisse deiner Ausmultiplikation mit deinen Termen für die [[Quadratische Funktionen | '''c)''' Vergleiche die Ergebnisse deiner Ausmultiplikation mit deinen Termen für die [[Mathematik-digital/Quadratische Funktionen erkunden/Die Normalform|4. Aufgabe bei der Normalform]] (S.14). | ||
<div class="mw-collapsible mw-collapsed" data-expandtext="Hinweis" data-collapsetext="Hinweis verbergen"> | |||
Es kann sein, dass dein Ergebnis etwas von deinem eigenem Normalformterm abweicht. Das liegt dann daran, dass du die Parabel bei der Aufgabe auf der Normalformseite nicht genau gleich in das Bild gelegt hast wie auf der Scheitelpunktseite. Du solltest dich jedoch in dem angegebenen Spielraumbereich der Lösungsvorschläge befinden. | |||
</div> | |||
< | <div class="mw-collapsible mw-collapsed" data-expandtext="Lösungsvorschläge anzeigen" data-collapsetext="Lösungsvorschläge verbergen"> | ||
{| | {| | ||
|- | |- | ||
|'''Funktionsterm Angry Birds'''|| ||'''Funktionsterm Golden Gate Bridge''' | |'''Funktionsterm Angry Birds'''|| '''Schritt-für-Schritt-Anleitung''' ||'''Funktionsterm Golden Gate Bridge'''|| '''Schritt-für-Schritt-Anleitung''' | ||
|- | |||
| | |||
|- | |||
| | |||
|- | |||
|<math>f(x)=-0,13(x-7)^2+4,85</math>|| Klammer auflösen ||<math>f(x)=0,04(x-5,7)^2+1</math>|| Klammer auflösen | |||
|- | |||
| | |||
|- | |||
| | |||
|- | |||
|<math>=-0,13((x-7)\cdot(x-7))+4,85</math>|| innere Klammer ausmultiplizieren ||<math>=0,04((x-5,7)\cdot(x-5,7))+1</math>|| innere Klammer ausmultiplizieren | |||
|- | |||
| | |||
|- | |||
| | |||
|- | |||
|<math>=-0,13(x^2-14x+49)+4,85</math>|| Klammer ausmultiplizieren ||<math>=0,04(x^2-11,4x+32,49)+1</math>|| Klammer ausmultiplizieren | |||
|- | |- | ||
| | | | ||
Zeile 78: | Zeile 88: | ||
| | | | ||
|- | |- | ||
|<math> | |<math>=-0,13x^2+1,82x-6,37+4,85</math>|| Zusammenfassen ||<math>=0,04x^2-0,456x+1,3+1</math>|| Zusammenfassen | ||
|- | |- | ||
| | | | ||
Zeile 90: | Zeile 100: | ||
{| | {| | ||
|- | |- | ||
|'''Funktionsterm Springbrunnen'''|| ||'''Funktionsterm Elbphilharmonie (links)''' | |'''Funktionsterm Springbrunnen'''|| '''Schritt-für-Schritt-Anleitung''' ||'''Funktionsterm Elbphilharmonie (links)'''|| '''Schritt-für-Schritt-Anleitung''' | ||
|- | |- | ||
| | | | ||
Zeile 96: | Zeile 106: | ||
| | | | ||
|- | |- | ||
|<math>f(x)=-0,33(x-4,85)^2+5,3</math>|| ||<math>f(x)=0,4(x-2,5)^2+4,35</math> | |<math>f(x)=-0,33(x-4,85)^2+5,3</math>|| Klammer auflösen ||<math>f(x)=0,4(x-2,5)^2+4,35</math>|| Klammer auflösen | ||
|- | |||
| | |||
|- | |||
| | |||
|- | |||
|<math>=-0,33((x-4,85)\cdot(x-4,85))+5,3</math>|| innere Klammer ausmultiplizieren ||<math>=0,4((x-2,5)\cdot(x-2,5))+4,35</math>|| innere Klammer ausmultiplizieren | |||
|- | |||
| | |||
|- | |||
| | |||
|- | |||
|<math>=-0,33(x^2-9,7x+23,52)+5,3</math>|| Klammer ausmultiplizieren ||<math>=0,4(x^2-5x+6,25)+4,35</math>|| Klammer ausmultiplizieren | |||
|- | |||
| | |||
|- | |||
| | |||
|- | |||
|<math>=-0,33x^2+3,2x-6,37-7,76</math>|| Zusammenfassen ||<math>=0,4x^2-2x+2,5+4,35</math>|| Zusammenfassen | |||
|- | |- | ||
| | | | ||
Zeile 108: | Zeile 136: | ||
{| | {| | ||
|- | |- | ||
|'''Funktionsterm Elbphilharmonie (mitte)'''|| ||'''Funktionsterm Elbphilharmonie (rechts)''' | |'''Funktionsterm Elbphilharmonie (mitte)'''|| '''Schritt-für-Schritt-Anleitung''' ||'''Funktionsterm Elbphilharmonie (rechts)'''|| '''Schritt-für-Schritt-Anleitung''' | ||
|- | |||
| | |||
|- | |||
| | |||
|- | |||
|<math>f(x)=0,33(x-5,85)^2+3,4</math>|| Klammer auflösen ||<math>f(x)=0,22(x-9,4)^2+3,6</math>|| Klammer auflösen | |||
|- | |||
| | |||
|- | |||
| | |||
|- | |||
|<math>=0,33((x-5,85)\cdot(x-5,85))+3,4</math>|| innere Klammer ausmultiplizieren ||<math>=0,22((x-9,4)\cdot(x-9,4))+3,6</math>|| innere Klammer ausmultiplizieren | |||
|- | |- | ||
| | | | ||
Zeile 114: | Zeile 154: | ||
| | | | ||
|- | |- | ||
|<math> | |<math>=0,33(x^2-11,7x+34,22)+3,4</math>|| Klammer ausmultiplizieren ||<math>=0,22(x^2-18,8x+88,36)+3,6</math>|| Klammer ausmultiplizieren | ||
|- | |||
| | |||
|- | |||
| | |||
|- | |||
|<math>=0,33x^2-3,86x+11,29+3,4</math>|| Zusammenfassen ||<math>=0,22x^2-4,14x+19,44+3,6</math>|| Zusammenfassen | |||
|- | |- | ||
| | | | ||
Zeile 126: | Zeile 172: | ||
{| | {| | ||
|- | |- | ||
|'''Funktionsterm Gebirge'''|| ||'''Funktionsterm Motorrad''' | |'''Funktionsterm Gebirge'''|| '''Schritt-für-Schritt-Anleitung''' ||'''Funktionsterm Motorrad'''|| '''Schritt-für-Schritt-Anleitung''' | ||
|- | |||
| | |||
|- | |||
| | |||
|- | |||
|<math>f(x)=-0,2(x-5,4)^2+2,3</math>|| Klammer auflösen ||<math>f(x)=-0,07(x-7,7)^2+5,95</math>|| Klammer auflösen | |||
|- | |||
| | |||
|- | |||
| | |||
|- | |||
|<math>=-0,2((x-5,4)\cdot(x-5,4))+2,3</math>|| innere Klammer ausmultiplizieren ||<math>=-0,07((x-7,7)\cdot(x-7,7))+5,95</math>|| innere Klammer ausmultiplizieren | |||
|- | |||
| | |||
|- | |||
| | |||
|- | |||
|<math>=-0,2(x^2-10,8x+29,16)+2,3</math>|| Klammer ausmultiplizieren ||<math>=-0,07(x^2-15,4x+59,29)+5,95</math>|| Klammer ausmultiplizieren | |||
|- | |- | ||
| | | | ||
Zeile 132: | Zeile 196: | ||
| | | | ||
|- | |- | ||
|<math> | |<math>=-0,2x^2+2,16x-5,83+2,3</math>|| Zusammenfassen ||<math>=-0,07x^2+1,08x-4,15+5,95</math>|| Zusammenfassen | ||
|- | |- | ||
| | | | ||
Zeile 139: | Zeile 203: | ||
|- | |- | ||
|<math>=-0,2x^2+2,16x-3,53</math>|| ||<math>=-0,07x^2+1,08x+1,79</math> | |<math>=-0,2x^2+2,16x-3,53</math>|| ||<math>=-0,07x^2+1,08x+1,79</math> | ||
|}</ | |} | ||
</div></div> | |||
Das folgende Applet kannst du nutzen, um deine Ergebnisse aus Aufgabe 1 zu kontrollieren. Außerdem kannst du mit den Parametern beider Darstellungsformen experimentieren und zum Beispiel untersuchen, wie du die Parameterwerte verändern musst, um beide Graphen an einer beliebigen Stelle im Koordinatensystem übereinander zu legen. | Das folgende Applet kannst du nutzen, um deine Ergebnisse aus Aufgabe 1 zu kontrollieren. Außerdem kannst du mit den Parametern beider Darstellungsformen experimentieren und zum Beispiel untersuchen, wie du die Parameterwerte verändern musst, um beide Graphen an einer beliebigen Stelle im Koordinatensystem übereinander zu legen. | ||
<ggb_applet id="R9CvVq59" width="800" height="570" border="888888" /> | |||
==Erklärvideo== | ==Erklärvideo== | ||
Zeile 152: | Zeile 216: | ||
Falls dir die Umformung von der Scheitelpunkt- auf die Normalform schwer fiel, kannst du dir hier ein Video dazu anschauen und es dann noch einmal probieren. Denke daran dir Kopfhörer anzuziehen, sofern du nicht alleine in einem Raum bist. | Falls dir die Umformung von der Scheitelpunkt- auf die Normalform schwer fiel, kannst du dir hier ein Video dazu anschauen und es dann noch einmal probieren. Denke daran dir Kopfhörer anzuziehen, sofern du nicht alleine in einem Raum bist. | ||
{{#evu:https://www.youtube.com/watch?v=_rvvZn1zTRc}} | |||
==Achtung: Parameter c <math>\neq</math> Parameter e== | |||
==Parameter c | <div class="box arbeitsmethode"> | ||
=== Aufgabe 2 === | |||
'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 15)''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]]. | |||
[[Datei:Unterhaltung c ungleich e.PNG|rahmenlos|650px|Parameter QF]] | [[Datei:Unterhaltung c ungleich e.PNG|rahmenlos|650px|Parameter QF]] | ||
'''a)''' Lies dir die Unterhaltung von Fabian, Merle und Lucio durch. | '''a)''' Lies dir die Unterhaltung von Fabian, Merle und Lucio durch. Zeichne zwei Parabeln in deinen Hefter bei denen (1) die Parameter <math>c</math> und <math>e</math> gleich sind bzw. (2) die Parameter <math>c</math> und <math>e</math> nicht gleich sind. | ||
'''b)''' | '''b)''' Gib jeweils die Werte für <math>c</math> und <math>e</math> an. | ||
<div class="mw-collapsible mw-collapsed" data-expandtext="Beispiellösung" data-collapsetext="verbergen"> | |||
Dein Ergebnis kann zum Beispiel so aussehen: | Dein Ergebnis kann zum Beispiel so aussehen: | ||
[[Datei:Beispiellösung Parameter c und e.PNG|rahmenlos|500px|Beispiel]] | [[Datei:Beispiellösung Parameter c und e.PNG|rahmenlos|500px|Beispiel]] | ||
Bei der Funktion <math>f(x)</math> sind <math>c=e=-5</math>. | Bei der Funktion <math>f(x)=x^2-5</math> sind <math>c=e=-5</math>. | ||
Bei <math>g(x)</math> ist <math>c=4</math> und <math>e=0</math>. | Bei <math>g(x)=(x-2)^2=x^2-4x+4</math> ist <math>c=4</math> und <math>e=0</math>. | ||
</div></div> | |||
Nutze das GeoGebra-Applet um deine eigene Lösung zu kontrollieren: | Nutze das GeoGebra-Applet um deine eigene Lösung zu kontrollieren: | ||
<ggb_applet id="DRDCQZvn" width="700" height="500" border="888888" /> | |||
==Merksätze== | ==Merksätze== | ||
{{Box|Aufgabe3| | |||
'''Für diese Aufgabe benötigst du deinen Hefter (Merkliste, S. 5-6)''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]]. | |||
Ergänze die Merksätze jeweils durch ein Beispiel. | |||
|Arbeitsmethode}} | |||
{{Box|Merke| | |||
Quadratische Funktionen können auf verschiedene Weisen in Termen dargestellt werden. Die beiden Formen, die du bisher kennengelernt hast, heißen | |||
*[[Mathematik-digital/Quadratische Funktionen erforschen/Die Scheitelpunktform|Scheitelpunktform]] und | |||
*[[Mathematik-digital/Quadratische Funktionen erforschen/Die Normalform|Normalform]]. | |||
Eine Parabel kann immer in beiden Darstellungsformen beschrieben werden.|Merksatz}} | |||
{{Box|Merke| | |||
Durch Ausmultiplikation des Terms einer quadratischen Funktion in Scheitelpunktform erhält man den zugehörigen Term in Normalform.|Merksatz}} | |||
{{Box|Merke| | |||
Für den Parameter c gilt: | |||
[[Datei:Beispiel c ungleich e.PNG|rahmenlos|600px|Parameter QF]] | |||
|Merksatz}} | |||
{{Fortsetzung|weiter=Übungen|weiterlink=Quadratische Funktionen erforschen/Übungen}} | |||
Erstellt von: [[Benutzer:Elena Jedtke|Elena Jedtke]] ([[Benutzer Diskussion:Elena Jedtke|Diskussion]]) | Erstellt von: [[Benutzer:Elena Jedtke|Elena Jedtke]] ([[Benutzer Diskussion:Elena Jedtke|Diskussion]]) | ||
[[Kategorie:Mathematik]] | |||
[[Kategorie:ZUM2Edutags]] | |||
[[Kategorie:Quadratische Funktion]] | |||
[[Kategorie:Interaktive Übung]] | |||
[[Kategorie:Geogebra]] |
Version vom 12. November 2018, 19:17 Uhr
Beispiel
Für den Basketballwurf konnten näherungsweise diese beiden Funktionsterme gefunden werden:
Die Funktionsterme müssen irgendwie ineinander überführbar sein, da sie die gleiche Parabel beschreiben.
Durch Ausmultiplikation der Scheitelpunktform erhalten wir:
Funktionsterm | Schritt-für-Schritt-Anleitung |
Klammer auflösen | |
innere Klammer ausmultiplizieren | |
Klammer ausmultiplizieren | |
Zusammenfassen | |
Ein Blick auf das zweite Bild oben zeigt, dass das Ergebnis der Ausmultiplikation genau der Term in Normalform ist.
|}
Aufgabe 1
Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 15) .
a) Lies dir das Beispiel oben durch und versuche es nachzuvollziehen.
b) Nimm deine Lösung zu der 1. Aufgabe bei der Scheitelpunktform in deinen Hefter (S. 9) und wähle zwei deiner Terme aus. Multipliziere diese Funktionsterme wie im Beispiel aus und notiere deine Rechnung.
c) Vergleiche die Ergebnisse deiner Ausmultiplikation mit deinen Termen für die 4. Aufgabe bei der Normalform (S.14).
Es kann sein, dass dein Ergebnis etwas von deinem eigenem Normalformterm abweicht. Das liegt dann daran, dass du die Parabel bei der Aufgabe auf der Normalformseite nicht genau gleich in das Bild gelegt hast wie auf der Scheitelpunktseite. Du solltest dich jedoch in dem angegebenen Spielraumbereich der Lösungsvorschläge befinden.
Funktionsterm Angry Birds | Schritt-für-Schritt-Anleitung | Funktionsterm Golden Gate Bridge | Schritt-für-Schritt-Anleitung |
Klammer auflösen | Klammer auflösen | ||
innere Klammer ausmultiplizieren | innere Klammer ausmultiplizieren | ||
Klammer ausmultiplizieren | Klammer ausmultiplizieren | ||
Zusammenfassen | Zusammenfassen | ||
Funktionsterm Springbrunnen | Schritt-für-Schritt-Anleitung | Funktionsterm Elbphilharmonie (links) | Schritt-für-Schritt-Anleitung |
Klammer auflösen | Klammer auflösen | ||
innere Klammer ausmultiplizieren | innere Klammer ausmultiplizieren | ||
Klammer ausmultiplizieren | Klammer ausmultiplizieren | ||
Zusammenfassen | Zusammenfassen | ||
Funktionsterm Elbphilharmonie (mitte) | Schritt-für-Schritt-Anleitung | Funktionsterm Elbphilharmonie (rechts) | Schritt-für-Schritt-Anleitung |
Klammer auflösen | Klammer auflösen | ||
innere Klammer ausmultiplizieren | innere Klammer ausmultiplizieren | ||
Klammer ausmultiplizieren | Klammer ausmultiplizieren | ||
Zusammenfassen | Zusammenfassen | ||
Funktionsterm Gebirge | Schritt-für-Schritt-Anleitung | Funktionsterm Motorrad | Schritt-für-Schritt-Anleitung |
Klammer auflösen | Klammer auflösen | ||
innere Klammer ausmultiplizieren | innere Klammer ausmultiplizieren | ||
Klammer ausmultiplizieren | Klammer ausmultiplizieren | ||
Zusammenfassen | Zusammenfassen | ||
Das folgende Applet kannst du nutzen, um deine Ergebnisse aus Aufgabe 1 zu kontrollieren. Außerdem kannst du mit den Parametern beider Darstellungsformen experimentieren und zum Beispiel untersuchen, wie du die Parameterwerte verändern musst, um beide Graphen an einer beliebigen Stelle im Koordinatensystem übereinander zu legen.
Erklärvideo
Daniel Jung hat auf Youtube in seinem Channel Mathe by Daniel Jung zu den verschiedensten Themen Erklärvideos erstellt.
Falls dir die Umformung von der Scheitelpunkt- auf die Normalform schwer fiel, kannst du dir hier ein Video dazu anschauen und es dann noch einmal probieren. Denke daran dir Kopfhörer anzuziehen, sofern du nicht alleine in einem Raum bist.
Achtung: Parameter c Parameter e
Aufgabe 2
Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 15) .
a) Lies dir die Unterhaltung von Fabian, Merle und Lucio durch. Zeichne zwei Parabeln in deinen Hefter bei denen (1) die Parameter und gleich sind bzw. (2) die Parameter und nicht gleich sind.
b) Gib jeweils die Werte für und an.
Nutze das GeoGebra-Applet um deine eigene Lösung zu kontrollieren:
Merksätze
Quadratische Funktionen können auf verschiedene Weisen in Termen dargestellt werden. Die beiden Formen, die du bisher kennengelernt hast, heißen
Eine Parabel kann immer in beiden Darstellungsformen beschrieben werden.
Erstellt von: Elena Jedtke (Diskussion)