Zentrische Streckung/Eigenschaften der zentrischen Streckung/4.Station: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Leonie Porzelt
KKeine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
 
(22 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
<div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;">
{{Navigation verstecken
[[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung|1. Station: Fixelemente]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/2.Station|2. Station: Geradentreue und Parallelentreue]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/3.Station|3. Station: Winkeltreue, Längentreue und Flächeninhaltstreue]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/4.Station|4. Station: Längenverhältnistreue]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/5.Station|5. Station: Kreistreue]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/6.Station|6. Station: Zusammenfassung]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/7.Station|7. Station: Übung]]
|{{Eigenschaften der zentrischen Streckung}}
</div>
|Lernschritte einblenden
<br>
|Lernschritte ausblenden
}}
__NOTOC__
 


==4. Station: Längenverhältnistreue==
==4. Station: Längenverhältnistreue==
<div style="border: 2px solid #ffd700; background-color:#ffffff; padding:7px;">
[[Bild:Porzelt_lobenderDia3.jpg]]
[[Bild:Porzelt_Panto-2.jpg|left]] <br>'''Längenverhältnistreue''' liegt vor, wenn das Längenverhältnis der Bildstrecke gleich dem der Urstrecke ist.
 
{{Box|1=Definition Längenverhältnistreue|2=
[[Bild:Porzelt_Panto-2.jpg|right]]
'''Längenverhältnistreue''' liegt vor, wenn das Längenverhältnis von zwei Bildstrecken gleich dem Längenverhältnis der beiden Urstrecken ist.
|3=Merksatz}}
 
 
{{Box|1=Finde heraus ob eine zentrische Streckung längenverhältnistreu ist!|2=
[[Bild:Porzelt_Verhältnistreu.jpg|right]]
'''Arbeitsauftrag:'''
 
#Berechne den Streckungsfaktor k.<br>
#Berechne <math>\overline{A'P'}</math> und <math>\overline{P'B'}</math>. (Tipp: Beim Eintragen Leerzeichen zwischen Zahl und Einheit nicht vergessen!)
#Berechne <math>{\overline{AP}\over\overline{PB}}</math> und <math>{\overline{A'P'}\over\overline{P'B'}}</math>. Runde auf 2 Nachkommastellen.
 
<br>
<br>
</div>
Mit Hilfe der folgenden Lückentexte kannst du den Arbeitsauftrag lösen.<br>
<br>
 
<div style="border: 2px solid #00CD00; background-color:#ffffff; padding:7px;">
Denk konzentriert nach und setze die richtige Aussage in die passende Lücke ein, um die Ergebnisse berechnen zu können:<br>
{|
 
|[[Bild:Porzelt_Verhältnistreu.jpg]]|| '''Arbeitsauftrag:'''
'''Zu Punkt 1:'''<br>
1.Berechne den Streckungsfaktor k.<br>
2.Berechne <math>\overline{A'P'}</math> und <math>\overline{P'B'}</math>.
<br>
<br>
3.Berechne <math>{\overline{AP}\over\overline{PB}}</math> und <math>{\overline{A'P'}\over\overline{P'B'}}</math>. Runde auf 2 Nachkommastellen.
|}
</div>
<br>
:'''''Mit Hilfe der folgenden Lückentexte kannst du den Arbeitsauftrag lösen.'''''
:'''''Denk konzentriert nach und setze die richtige Aussage in die passende Lücke ein, um die Ergebnisse berechnen zu können:'''''


<div class="lueckentext-quiz">
<div class="lueckentext-quiz">
Lösung zu 1: <br>
<math>\mid k \mid</math> = '''<math>\overline{ZB'}</math>''' : '''<math>\overline{ZB}</math>'''<br>
<math>\mid k \mid</math> = '''<math>\overline{ZB'}</math>''' : '''<math>\overline{ZB}</math>'''<br>
Einsetzen der Werte:<br>
Einsetzen der Werte:<br>
<math>\mid k \mid</math> = '''6''' : '''3''' = '''2 (Berechne das Ergebnis mit dem Taschenrechner)'''<br>
<math>\mid k \mid</math> = '''6''' : '''3''' = '''2 (Berechne das Ergebnis mit dem Taschenrechner)'''<br>
</div>
</div>
{|
 
|[[Bild:Porzelt_Verhältnistreu.jpg]]||<div class="lueckentext-quiz">
 
Lösung zu 2:<br>
'''Zu Punkt 2:'''<br>
 
<div class="lueckentext-quiz">
[[Bild:Porzelt_Verhältnistreu.jpg|right]]
 
<math>\overline{A'P'}</math> = '''<math>\mid k \mid</math>''' <math>\cdot</math> '''<math>\overline{AP}</math>'''<br>
<math>\overline{A'P'}</math> = '''<math>\mid k \mid</math>''' <math>\cdot</math> '''<math>\overline{AP}</math>'''<br>
Einsetzen der Werte:<br>
Einsetzen der Werte:<br>
<math>\overline{A'P'}</math> = '''2''' <math>\cdot</math> '''0,7 cm''' = '''1,4 cm (Berechne das Ergebnis mit dem Taschenrechner)'''<br>
<math>\overline{A'P'}</math> = '''2''' <math>\cdot</math> '''0,7 cm''' = '''1,4 cm (Berechne das Ergebnis mit dem Taschenrechner und gib die Einheit mit an!)'''<br>
<br>
<br>
<math>\overline{P'B'}</math> = '''<math>\mid k \mid</math>''' <math>\cdot</math> '''<math>\overline{PB}</math>'''<br>
<math>\overline{P'B'}</math> = '''<math>\mid k \mid</math>''' <math>\cdot</math> '''<math>\overline{PB}</math>'''<br>
Einsetzen der Werte:<br>
Einsetzen der Werte:<br>
<math>\overline{P'B'}</math> = '''2''' <math>\cdot</math> '''1,5 cm''' = '''3 cm (Berechne das Ergebnis mit dem Taschenrechner)'''<br>
<math>\overline{P'B'}</math> = '''2''' <math>\cdot</math> '''1,5 cm''' = '''3 cm (Berechne das Ergebnis mit dem Taschenrechner und gib die Einheit mit an!)'''<br>
</div>
</div>
|}
 
 
'''Zu Punkt 3:'''<br>


<div class="lueckentext-quiz">
<div class="lueckentext-quiz">
Lösung zu 3:<br>
[[Bild:Porzelt_Verhältnistreu.jpg|right]]
Einsetzen der Werte:<br>
 
<math>{\overline{AP}\over\overline{PB}}</math> = '''<math>{0,7 cm \over 1,5 cm}</math>''' = '''0,47 cm (Berechne das Ergebnis mit dem Taschenrechner)'''<br>
Entnehme dem Bild die Werte, berechne und runde das Ergebnis auf zwei Nachkommastellen:<br>
<math>{\overline{A'P'}\over\overline{P'B'}}</math> = '''<math>{1,4 cm \over 3 cm}</math>''' = '''0,47 cm (Berechne das Ergebnis mit dem Taschenrechner)'''<br>
 
<math>\frac{\overline{AP}}{\overline{PB}}</math> = '''<math>\frac{0,7 cm}{1,5 cm}</math>''' = '''0,47 (Berechne das Ergebnis mit dem Taschenrechner)'''<br>
<math>\frac{\overline{A'P'}}{\overline{P'B'}}</math> = '''<math>\frac{1,4 cm}{3 cm}</math>''' = '''0,47 (Berechne das Ergebnis mit dem Taschenrechner)'''<br>
</div>
</div>
:'''Das hast du super gemeistert!'''
|3=Arbeitsmethode}}
<br>
 


<div style="border: 2px solid #9c9c9c; background-color:#ffffff; padding:7px;">
[[Bild:Porzelt_fragenderDia-1.jpg‎ |left]]
<br>
<br>
:Warum ist <math>{\overline{AP}\over\overline{PB}}</math> = <math>{\overline{A'P'}\over\overline{P'B'}}</math>?
[[Bild:Porzelt_lobenderPanto6.jpg]]
<br>
<br>
</div>
 
{{Box|1=Wie erklärt sich die Gleichheit in Punkt 3 aus der vorherigen Aufgabe?|2=
[[Bild:Porzelt_fragenderDia-1.jpg‎|right]]
Warum ist das Längenverhältnis von <math>\overline{AP}</math> und <math>\overline{PB}</math> gleich dem Längenverhältnis der Bildstrecken?
 
Warum ist <math>{\overline{AP}\over\overline{PB}}</math> = <math>{\overline{A'P'}\over\overline{P'B'}}</math>?
|3=Frage}}
 
{{Box|1=Finde die Antwort auf die Frage!|2=
<div class="lueckentext-quiz">
<div class="lueckentext-quiz">
Für  <math>\overline{AP}</math> kann man auch '''<math>\mid k\mid  \cdot \overline{A'P'}</math>''' und für <math>\overline{PB}</math> kann man '''<math>\mid k\mid  \cdot \overline{P'B'}</math>''' einsetzen. <br>
Für  <math>\overline{A'P'}</math> kann man auch '''<math>\mid k\mid  \cdot \overline{AP}</math>''' und für <math>\overline{P'B'}</math> kann man '''<math>\mid k\mid  \cdot \overline{PB}</math>''' einsetzen. <br>
Daraus folgt: <math>{\overline{AP}\over\overline{PB}} ={{|k|}\over{|k|}}\cdot</math> '''<math>{\overline{A'P'}\over\overline{P'B'}}</math>'''.<br>
Daraus folgt: <math>{\overline{A'P'}\over\overline{P'B'}} ={{|k|}\over{|k|}}\cdot</math> '''<math>{\overline{AP}\over\overline{PB}}</math>'''.<br>
<math>\mid k\mid</math>  kann man rauskürzen, so dass '''<math>{\overline{AP}\over\overline{PB}}</math>''' <math>= {\overline{A'P'}\over\overline{P'B'}}</math> gilt.
<math>\mid k\mid</math>  kann man rauskürzen, so dass '''<math>{\overline{A'P'}\over\overline{P'B'}}</math>''' <math>= {\overline{AP}\over\overline{PB}}</math> gilt.
</div>
</div>
|3=Lösung}}
<br>
[[Bild:Porzelt_lobenderDia5.jpg]]
<br>
<br>


{{Box|1=Gelten die Überlegungen für alle Strecken?|2=
<div class="multiplechoice-quiz">
<div class="multiplechoice-quiz">
'''Ist die zentrische Streckung längenverhältnistreu?'''
'''Ist die zentrische Streckung längenverhältnistreu?'''
(Ja) (!Nein)
(Ja) (!Nein)
</div>
</div>
<br>
|3=Frage}}
<div align="right">[[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/5.Station|Weiter zur 5. Station]]</div>
 
<div align="left">[[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/3.Station|Zurück zur 3. Station]]</div>
{{Fortsetzung|weiter=Kreistreue|weiterlink=../5.Station}}
[[Kategorie:Interaktive Übung]]
[[Kategorie:R-Quiz]]

Aktuelle Version vom 23. April 2022, 15:58 Uhr


4. Station: Längenverhältnistreue

Porzelt lobenderDia3.jpg

Definition Längenverhältnistreue
Porzelt Panto-2.jpg
Längenverhältnistreue liegt vor, wenn das Längenverhältnis von zwei Bildstrecken gleich dem Längenverhältnis der beiden Urstrecken ist.


Finde heraus ob eine zentrische Streckung längenverhältnistreu ist!
Porzelt Verhältnistreu.jpg

Arbeitsauftrag:

  1. Berechne den Streckungsfaktor k.
  2. Berechne und . (Tipp: Beim Eintragen Leerzeichen zwischen Zahl und Einheit nicht vergessen!)
  3. Berechne und . Runde auf 2 Nachkommastellen.


Mit Hilfe der folgenden Lückentexte kannst du den Arbeitsauftrag lösen.

Denk konzentriert nach und setze die richtige Aussage in die passende Lücke ein, um die Ergebnisse berechnen zu können:

Zu Punkt 1:

=  :
Einsetzen der Werte:
= 6 : 3 = 2 (Berechne das Ergebnis mit dem Taschenrechner)


Zu Punkt 2:

Porzelt Verhältnistreu.jpg

=
Einsetzen der Werte:
= 2 0,7 cm = 1,4 cm (Berechne das Ergebnis mit dem Taschenrechner und gib die Einheit mit an!)

=
Einsetzen der Werte:
= 2 1,5 cm = 3 cm (Berechne das Ergebnis mit dem Taschenrechner und gib die Einheit mit an!)


Zu Punkt 3:

Porzelt Verhältnistreu.jpg

Entnehme dem Bild die Werte, berechne und runde das Ergebnis auf zwei Nachkommastellen:

= = 0,47 (Berechne das Ergebnis mit dem Taschenrechner)
= = 0,47 (Berechne das Ergebnis mit dem Taschenrechner)



Porzelt lobenderPanto6.jpg

Wie erklärt sich die Gleichheit in Punkt 3 aus der vorherigen Aufgabe?
Porzelt fragenderDia-1.jpg

Warum ist das Längenverhältnis von und gleich dem Längenverhältnis der Bildstrecken?

Warum ist = ?

Finde die Antwort auf die Frage!

Für kann man auch und für kann man einsetzen.
Daraus folgt: .
kann man rauskürzen, so dass gilt.


Porzelt lobenderDia5.jpg

Gelten die Überlegungen für alle Strecken?

Ist die zentrische Streckung längenverhältnistreu? (Ja) (!Nein)