Quadratische Funktionen erforschen/Übungen: Unterschied zwischen den Versionen
K (17 Versionen importiert) |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 1: | Zeile 1: | ||
{{Quadratische Funktionen erforschen}} | {{Navigation verstecken|{{Quadratische Funktionen erforschen}}|Lernschritte einblenden|Lernschritte ausblenden}} | ||
==Parameter== | |||
===Scheitelpunktform=== | |||
{{Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 16) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]]. | |||
{{Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. | |||
In dieser Aufgabe werden die Parameter kombiniert, die du in dem Kapitel [[Mathematik-digital/Quadratische Funktionen erkunden/Die Parameter der Scheitelpunktform|Die Parameter der Scheitelpunktform]] kennengelernt hast.}} | |||
Gegeben ist die Wertetabelle: | Gegeben ist die Wertetabelle: | ||
Zeile 41: | Zeile 14: | ||
'''a)''' Zeichne die Graphen zu den Funktionen ''f''(x), ''g''(x) und ''h''(x) in das Koordinatensystem in deinem Hefter. Nicht alle y-Werte können sinnvoll in den Ausschnitt, der in dem Koordinatensystem gezeigt wird, eingetragen werden. | '''a)''' Zeichne die Graphen zu den Funktionen ''f''(x), ''g''(x) und ''h''(x) in das Koordinatensystem in deinem Hefter. Nicht alle y-Werte können sinnvoll in den Ausschnitt, der in dem Koordinatensystem gezeigt wird, eingetragen werden. | ||
{{Lösung versteckt|[[Datei:Lösung zu Übung1.PNG|rahmenlos|750px|Lösung zu Tabelle Übung1]]}} | |||
'''b)''' Bestimme die Funktionsterme in Scheitelpunktform. | '''b)''' Bestimme die Funktionsterme in Scheitelpunktform. | ||
{{Lösung versteckt|1=Lies zunächst den Scheitelpunkt ab und setze dessen Koordinaten an den passenden Stellen des allgemeinen Funktionsterms <math>f(x)=a(x-d)^2+e</math> ein. | |||
Ist der Graph gestreckt, gestaucht und/oder gespiegelt? Durch die Beantwortung dieser Frage kannst du den Wert des zugehörigen Parameters eingrenzen. Anschließend findest du den genauen Wert zum Beispiel durch systematisches Probieren und abgleichen mit den gegebenen Funktionswerten.|2=Hilfe|3=Hilfe verbergen}} | |||
{{Lösung versteckt|1=<math>f(x)=1/5x^2-3.5</math> | |||
<math>g(x)=(x+4)^2+0.5</math> | <math>g(x)=(x+4)^2+0.5</math> | ||
<math>h(x)=-5(x-2)^2+10</math>|2=Lösung|3=Lösung verbergen}} | |||
{{Box|1=Übung|2=In diesem Applet sind verschiedene Graphen abgebildet. Ermittle die zugehörigen Funktionsterme und trage sie in die Felder unter den jeweiligen Graphen ein. | |||
{{Übung| | |||
In diesem Applet sind verschiedene Graphen abgebildet. Ermittle die zugehörigen Funktionsterme und trage sie in die Felder unter den jeweiligen Graphen ein. | |||
'''Hinweise:''' | '''Hinweise:''' | ||
::'''1. Beginne jeden Term mit <math>y=</math>''' | ::'''1. Beginne jeden Term mit <math>y=</math>''' | ||
::'''2. Wenn du ein "hoch 2" einfügen möchtest, schreibe ^2.''' | ::'''2. Wenn du ein "hoch 2" einfügen möchtest, schreibe ^2.''' | ||
{{LearningApp|app=p8guq0hdn17|width=70%|height=600px}} | |||
{{Lösung versteckt|[[Datei:Lösung Applet Finde den Term.PNG|rahmenlos|800px|Lösung zu Applet]]}} | |||
|3=Üben}} | |||
{{Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S.17)''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]]. | |||
{{Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. | |||
Vervollständige die Tabelle: | Vervollständige die Tabelle: | ||
[[Datei:Übung Lagebeschreibung.PNG|rahmenlos|750px|Übungsaufgabe]] | [[Datei:Übung Lagebeschreibung.PNG|rahmenlos|750px|Übungsaufgabe]] | ||
{{Lösung versteckt|[[Datei:Übung Lagebeschreibung Lsg.PNG|rahmenlos|750px|Lösungsvorschlag]]}} | |||
}} | |||
{{Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. | ===Normalform=== | ||
{{Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 17)''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].}} | |||
Zwei Parabeln sollen den gleichen y-Achsenabschnitt c haben. Gib je zwei Funktionsterme in Normalform an. | Zwei Parabeln sollen den gleichen y-Achsenabschnitt c haben. Gib je zwei Funktionsterme in Normalform an. | ||
Zeile 84: | Zeile 51: | ||
'''a)''' <math>c=1</math> '''b)''' <math>c=-2,5</math> '''c)''' <math>c=-4</math> '''d)''' <math>c=\frac{3}{5}</math> '''e)''' <math>c=0</math> | '''a)''' <math>c=1</math> '''b)''' <math>c=-2,5</math> '''c)''' <math>c=-4</math> '''d)''' <math>c=\frac{3}{5}</math> '''e)''' <math>c=0</math> | ||
< | <div class="mw-collapsible mw-collapsed" data-expandtext="Beispiellösung" data-collapsetext="Beispiellösung verbergen"> | ||
Deine Terme können anders aussehen, als die Terme hier in den Lösungsvorschlägen. Wichtig ist, dass deine zwei Terme jeweils den gleichen y-Achsenabschnitt c wie angegeben haben. Die Parameter a und b können dann beliebig variiert werden. | Deine Terme können ganz anders aussehen, als die Terme hier in den Lösungsvorschlägen. Wichtig ist, dass deine zwei Terme jeweils den gleichen y-Achsenabschnitt c wie angegeben haben. Die Parameter a und b können dann beliebig variiert werden. | ||
{| | {| | ||
Zeile 109: | Zeile 76: | ||
| || <math>y=-x^2+5x+\frac{3}{5}</math> || || <math>y=x^2-x</math> | | || <math>y=-x^2+5x+\frac{3}{5}</math> || || <math>y=x^2-x</math> | ||
|} | |} | ||
</ | </div> | ||
{{Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. | {{Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 18) und einen Partner''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]] [[Datei:Puzzle-1020221 640.jpg|125px|rahmenlos|Partnerarbeit]].}} | ||
'''a)''' Denke dir drei Funktionsterme in Normalform aus. | '''a)''' Denke dir drei Funktionsterme in Normalform aus. | ||
{{Lösung versteckt|1=Terme in Normalform quadratischer Funktionen sehen allgemein so aus: <math>y=ax^2+bx+c</math>. | |||
Denke dir Werte für die Parameter a, b und c aus und setze sie ein. | |||
'''Beispiel:''' Für <math>a=1</math>, <math>b=1</math> und <math>c=-4</math> erhält man: <math>y=1\cdot x^2+1\cdot x-4</math>.}} | |||
'''b)''' Gib deinem Partner deine Funktionsterme und nimm dafür seine. Zeichnet die Graphen zu den Termen. | '''b)''' Gib deinem Partner deine Funktionsterme und nimm dafür seine. Zeichnet die Graphen zu den Termen. | ||
{{Lösung versteckt|Zur Kontrolle kannst du das unten stehende '''GeoGebra-Applet''' benutzen. Gib die Parameter der Funktionsterme ein und vergleiche deinen Graph mit dem Ergebnis im Applet.}} | |||
Gib die Parameter der Funktionsterme ein und vergleiche deinen | |||
'''c)''' Vergleicht eure Ergebnisse und erklärt Schritt-für-Schritt wie ihr die Graphen erstellt habt. Notiert eine gemeinsame Schritt-für-Schritt-Anleitung in euren Hefter. | '''c)''' Vergleicht eure Ergebnisse und erklärt Schritt-für-Schritt wie ihr die Graphen erstellt habt. Notiert eine gemeinsame Schritt-für-Schritt-Anleitung in euren Hefter. | ||
< | {{Lösung versteckt | ||
|#y-Achsenabschnitt P(0;c) ablesen. | |||
#Verschiedene x-Werte in den Term einsetzen und so die zugehörigen y-Werte bestimmen (Erstellen einer Tabelle). | |||
#Koordinatensystem zeichnen und Punkte eintragen. | |||
#Punkte zu einer Parabel verbinden.}} | |||
<ggb_applet id="GBnam42z" width="750" height="499" border="888888" /> | |||
===Allgemeine Übungen=== | |||
===Allgemeine Übungen | |||
{{Übung|Teste dein Wissen und werde Punkte-Millionär: | |||
{{LearningApp|app=phcsyj21c17|width=70%|height=500px}} | |||
}} | |||
{{Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. | {{Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 19) und einen Partner''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]] [[Datei:Puzzle-1020221 640.jpg|125px|rahmenlos|Partnerarbeit]].}} | ||
'''a)''' Denke dir zwei Terme quadratischer Funktionen aus und notiere eine Lagebeschreibung des Graphen. | '''a)''' Denke dir zwei Terme quadratischer Funktionen aus und notiere eine Lagebeschreibung des Graphen. | ||
< | <div class="mw-collapsible mw-collapsed" data-expandtext="Beispiel" data-collapsetext="Beispiel verbergen"> | ||
Die Parabel ist eine an der x-Achse gespiegelte Normalparabel. Sie ist um je eine Einheit nach rechts und nach oben verschoben. Ihr Scheitelpunkt lautet S(1|1).</div> | |||
'''b)''' Tausche deine Beschreibungen (nicht den Term!) mit denen deines Partners aus und bestimme seine Funktionsterme. | '''b)''' Tausche deine Beschreibungen (nicht den Term!) mit denen deines Partners aus und bestimme seine Funktionsterme. | ||
{{Lösung versteckt|1=Die Lösung zu dem Beispiel in Übungsteil a) lautet: <math>y=(x-1)^2+1</math>.|2=Beispiel|3=Beispiel}} | |||
'''c)''' Kontrolliert eure Ergebnisse gegenseitig. Habt ihr die richtigen Terme gefunden? Wenn nicht, versucht gemeinsam eure Fehler aufzudecken und zu klären. | '''c)''' Kontrolliert eure Ergebnisse gegenseitig. Habt ihr die richtigen Terme gefunden? Wenn nicht, versucht gemeinsam eure Fehler aufzudecken und zu klären. | ||
}} | {{Lösung versteckt|Schaut euch noch einmal die Merksätze auf den Parameterseiten der [[Mathematik-digital/Quadratische Funktionen erkunden/Die Parameter der Normalform|Normalform]] und der [[Mathematik-digital/Quadratische Funktionen erkunden/Die Parameter der Scheitelpunktform|Scheitelpunktform]] an.|Hilfe|Hilfe verbergen}} | ||
== | ==Von der Scheitelpunkt- zur Normalform== | ||
{{Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. | {{Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 20)''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].}} | ||
Forme die folgenden Terme in Scheitelpunktform in Normalform um: | Forme die folgenden Terme in Scheitelpunktform in Normalform um: | ||
Zeile 169: | Zeile 130: | ||
<math>(3)y=4(x-1)^2+0,5</math> <math>(6)y=(x+0,5)^2+0,75</math> <math>(9)y=0,5(x-2)^2-16</math> | <math>(3)y=4(x-1)^2+0,5</math> <math>(6)y=(x+0,5)^2+0,75</math> <math>(9)y=0,5(x-2)^2-16</math> | ||
<div class="mw-collapsible mw-collapsed" data-expandtext="Lösung" data-collapsetext="Lösung verbergen"> | |||
< | |||
{| | {| | ||
|- | |- | ||
Zeile 342: | Zeile 302: | ||
|- | |- | ||
|<math>=2x^2+28x+63</math> | |<math>=2x^2+28x+63</math> | ||
|}</ | |}</div> | ||
==Quadratische Funktionen anwenden== | |||
{{Übung|Diese Aufgabe befindet sich auch in den Kapiteln zur [[Mathematik-digital/Quadratische Funktionen erkunden/Die Scheitelpunktform|Scheitelpunktform]] und zur [[Mathematik-digital/Quadratische Funktionen erkunden/Die Normalform|Normalform]]. Du kannst sie hier erneut als Übung verwenden, indem du die Bilder bearbeitest, die du dort ausgelassen hast. }} | |||
Finde Werte für a, d und e bzw. a, b und c, so dass <math>f(x)</math> bzw. <math>g(x)</math> die Kurve auf dem Bild möglichst gut beschreibt. | Finde Werte für a, d und e bzw. a, b und c, so dass <math>f(x)</math> bzw. <math>g(x)</math> die Kurve auf dem Bild möglichst gut beschreibt. | ||
< | <ggb_applet id="Jymnn6u8" width="895" height="610" border="888888" /> | ||
< | <div class="mw-collapsible mw-collapsed" data-expandtext="Lösungsvorschläge" data-collapsetext="Lösungsvorschläge verbergen"> | ||
Da es nicht die eine richtige Lösung gibt, findest du in der Tabelle Lösungsvorschläge sowie Spielräume, in denen die Parameter liegen können, um den Verlauf angemessen zu beschreiben. | Da es nicht die eine richtige Lösung gibt, findest du in der Tabelle Lösungsvorschläge sowie Spielräume, in denen die Parameter liegen können, um den Verlauf angemessen zu beschreiben. | ||
Zeile 407: | Zeile 364: | ||
| Basketball || <math>f(x)=-0.32x^2+4.16x-7.07</math> || -0.35 ≤ a ≤ -0.29 || 3.80 ≤ b ≤ 4.40 || -7.40 ≤ c ≤ -6.10 | | Basketball || <math>f(x)=-0.32x^2+4.16x-7.07</math> || -0.35 ≤ a ≤ -0.29 || 3.80 ≤ b ≤ 4.40 || -7.40 ≤ c ≤ -6.10 | ||
|} | |} | ||
</ | </div> | ||
{{Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. | {{Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 21)''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]]. | ||
[[Datei:Aufgabe Terrasse für Kiosk.PNG|rahmenlos|700px|Übungsaufgabe]] | [[Datei:Aufgabe Terrasse für Kiosk.PNG|rahmenlos|700px|Übungsaufgabe]]}} | ||
{{Lösung versteckt|1= | |||
'''a)''' <math>A(2)=2 \cdot (20-2)=2 \cdot 18=36</math>, <math>A(4)=4 \cdot (20-4)=4 \cdot 16=64</math>, <math>A(10)=10 \cdot (20-10)=10 \cdot 10=100</math> | |||
Zeile 424: | Zeile 382: | ||
'''b)''' <math>A(x)=x \cdot (20-x)</math> | '''b)''' <math>A(x)=x \cdot (20-x)</math> | ||
Für den Flächeninhalt eines Rechtecks gilt: <math>A=a \cdot b</math>, wobei a und b die Seitenlängen des Rechtecks beschreiben. Für die Terrasse gilt: <math>a=x</math> und <math>b=20-x</math>. | Für den Flächeninhalt eines Rechtecks gilt: <math>A=a \cdot b</math>, wobei a und b die Seitenlängen des Rechtecks beschreiben. Für die Terrasse gilt: <math>a=x</math> und <math>b=20-x</math>.}} | ||
Erstellt von: [[Benutzer:Elena Jedtke|Elena Jedtke]] ([[Benutzer Diskussion:Elena Jedtke|Diskussion]]) | |||
[[Kategorie:Mathematik]] | |||
[[Kategorie:ZUM2Edutags]] | |||
[[Kategorie:Quadratische Funktion]] | |||
[[Kategorie:Interaktive Übung]] | |||
[[Kategorie:Learning-App]] | |||
[[Kategorie:Geogebra]] |
Version vom 12. November 2018, 19:18 Uhr
Parameter
Scheitelpunktform
Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 16) .
In dieser Aufgabe werden die Parameter kombiniert, die du in dem Kapitel Die Parameter der Scheitelpunktform kennengelernt hast.
Gegeben ist die Wertetabelle:
a) Zeichne die Graphen zu den Funktionen f(x), g(x) und h(x) in das Koordinatensystem in deinem Hefter. Nicht alle y-Werte können sinnvoll in den Ausschnitt, der in dem Koordinatensystem gezeigt wird, eingetragen werden.
b) Bestimme die Funktionsterme in Scheitelpunktform.
Lies zunächst den Scheitelpunkt ab und setze dessen Koordinaten an den passenden Stellen des allgemeinen Funktionsterms ein.
Ist der Graph gestreckt, gestaucht und/oder gespiegelt? Durch die Beantwortung dieser Frage kannst du den Wert des zugehörigen Parameters eingrenzen. Anschließend findest du den genauen Wert zum Beispiel durch systematisches Probieren und abgleichen mit den gegebenen Funktionswerten.
Normalform
Zwei Parabeln sollen den gleichen y-Achsenabschnitt c haben. Gib je zwei Funktionsterme in Normalform an.
a) b) c) d) e)
Deine Terme können ganz anders aussehen, als die Terme hier in den Lösungsvorschlägen. Wichtig ist, dass deine zwei Terme jeweils den gleichen y-Achsenabschnitt c wie angegeben haben. Die Parameter a und b können dann beliebig variiert werden.
a) | b) | c) | |||
d) | e) | ||
a) Denke dir drei Funktionsterme in Normalform aus.
Terme in Normalform quadratischer Funktionen sehen allgemein so aus: . Denke dir Werte für die Parameter a, b und c aus und setze sie ein.
Beispiel: Für , und erhält man: .b) Gib deinem Partner deine Funktionsterme und nimm dafür seine. Zeichnet die Graphen zu den Termen.
c) Vergleicht eure Ergebnisse und erklärt Schritt-für-Schritt wie ihr die Graphen erstellt habt. Notiert eine gemeinsame Schritt-für-Schritt-Anleitung in euren Hefter.
- y-Achsenabschnitt P(0;c) ablesen.
- Verschiedene x-Werte in den Term einsetzen und so die zugehörigen y-Werte bestimmen (Erstellen einer Tabelle).
- Koordinatensystem zeichnen und Punkte eintragen.
- Punkte zu einer Parabel verbinden.
Allgemeine Übungen
Teste dein Wissen und werde Punkte-Millionär:
a) Denke dir zwei Terme quadratischer Funktionen aus und notiere eine Lagebeschreibung des Graphen.
b) Tausche deine Beschreibungen (nicht den Term!) mit denen deines Partners aus und bestimme seine Funktionsterme.
c) Kontrolliert eure Ergebnisse gegenseitig. Habt ihr die richtigen Terme gefunden? Wenn nicht, versucht gemeinsam eure Fehler aufzudecken und zu klären.
Von der Scheitelpunkt- zur Normalform
Forme die folgenden Terme in Scheitelpunktform in Normalform um:
Funktionsterm (1) | Schritt-für-Schritt-Anleitung | Funktionsterm (6) | Schritt-für-Schritt-Anleitung |
Klammer auflösen | Klammer auflösen | ||
Klammer ausmultiplizieren | Klammer ausmultiplizieren | ||
Zusammenfassen | Zusammenfassen | ||
Funktionsterm (2) | Schritt-für-Schritt-Anleitung | Funktionsterm (7) | Schritt-für-Schritt-Anleitung |
Klammer auflösen | Klammer auflösen | ||
innere Klammer ausmultiplizieren | Klammer ausmultiplizieren | ||
Klammer ausmultiplizieren | Zusammenfassen | ||
Zusammenfassen | |||
Funktionsterm (3) | Schritt-für-Schritt-Anleitung | Funktionsterm (8) | Schritt-für-Schritt-Anleitung |
Klammer auflösen | Klammer auflösen | ||
innere Klammer ausmultiplizieren | innere Klammer ausmultiplizieren | ||
Klammer ausmultiplizieren | Klammer ausmultiplizieren | ||
Zusammenfassen | Zusammenfassen | ||
Funktionsterm (4) | Schritt-für-Schritt-Anleitung | Funktionsterm (9) | Schritt-für-Schritt-Anleitung |
Klammer auflösen | Klammer auflösen | ||
Klammer ausmultiplizieren | innere Klammer ausmultiplizieren | ||
Zusammenfassen | Klammer ausmultiplizieren | ||
Zusammenfassen | |||
Funktionsterm (5) | Schritt-für-Schritt-Anleitung |
Klammer auflösen | |
Klammer ausmultiplizieren | |
Zusammenfassen | |
Quadratische Funktionen anwenden
Finde Werte für a, d und e bzw. a, b und c, so dass bzw. die Kurve auf dem Bild möglichst gut beschreibt.
Da es nicht die eine richtige Lösung gibt, findest du in der Tabelle Lösungsvorschläge sowie Spielräume, in denen die Parameter liegen können, um den Verlauf angemessen zu beschreiben.
Scheitelpunktform:
Hintergrundbild | Lösungsvorschlag | Parameter a | Parameter d | Parameter e |
---|---|---|---|---|
Angry Birds | -0.15 ≤ a ≤ -0.13 | 6.80 ≤ d ≤ 7.20 | 4.70 ≤ e ≤ 5.00 | |
Golden Gate Bridge | 0.03 ≤ a ≤ 0.05 | 5.00 ≤ d ≤ 6.40 | 0.80 ≤ e ≤ 1.10 | |
Springbrunnen | -0.40 ≤ a ≤ -0.30 | 4.70 ≤ d ≤ 5.00 | 5.10 ≤ e ≤ 5.50 | |
Elbphilharmonie (Bogen links) | 0.33 ≤ a ≤ 0.47 | 2.40 ≤ d ≤ 2.60 | 4.25 ≤ e ≤ 4.40 | |
Elbphilharmonie (Bogen mitte) | 0.30 ≤ a ≤ 0.36 | 5.70 ≤ d ≤ 6.00 | 3.20 ≤ e ≤ 3.60 | |
Elbphilharmonie (Bogen rechts) | 0.18 ≤ a ≤ 0.27 | 9.30 ≤ d ≤ 9.50 | 3.55 ≤ e ≤ 3.65 | |
Gebirgsformation | -0.30 ≤ a ≤ -0.10 | 5.10 ≤ d ≤ 5.70 | 2.10 ≤ e ≤ 2.50 | |
Motorrad-Stunt | -0.10 ≤ a ≤ -0.04 | 7.30 ≤ d ≤ 8.10 | 5.70 ≤ e ≤ 6.20 | |
Basketball | -0.35 ≤ a ≤ -0.29 | 6.20 ≤ d ≤ 6.80 | 6.20 ≤ e ≤ 6.70 |
Normalform:
Hintergrundbild | Lösungsvorschlag | Parameter a | Parameter b | Parameter c |
---|---|---|---|---|
Angry Birds | -0.14 ≤ a ≤ -0.13 | 1.82 ≤ b ≤ 1.95 | -1.85 ≤ c ≤ -1.52 | |
Golden Gate Bridge | 0.03 ≤ a ≤ 0.05 | -0.40 ≤ b ≤ -0.50 | 2.05 ≤ c ≤ 2.30 | |
Springbrunnen | -0.40 ≤ a ≤ -0.30 | 3.15 ≤ b ≤ 3.35 | -2.95 ≤ c ≤ -2.45 | |
Elbphilharmonie (Bogen links) | 0.33 ≤ a ≤ 0.47 | 1.80 ≤ b ≤ 2.00 | 6.35 ≤ c ≤ 6.85 | |
Elbphilharmonie (Bogen mitte) | 0.30 ≤ a ≤ 0.36 | -4.10 ≤ b ≤ -3.60 | 13.65 ≤ c ≤ 14.95 | |
Elbphilharmonie (Bogen rechts) | 0.18 ≤ a ≤ 0.27 | -3.40 ≤ b ≤ -5.05 | 19.70 ≤ c ≤ 27.20 | |
Gebirgsformation | -0.30 ≤ a ≤ -0.15 | 1.55 ≤ b ≤ 3.30 | -6.35 ≤ c ≤ -1.70 | |
Motorrad-Stunt | -0.10 ≤ a ≤ -0.04 | 0.85 ≤ b ≤ 1.30 | 0.95 ≤ c ≤ 1.79 | |
Basketball | -0.35 ≤ a ≤ -0.29 | 3.80 ≤ b ≤ 4.40 | -7.40 ≤ c ≤ -6.10 |
a) , ,
Für x = 2 m beträgt der Flächeninhalt der Terrasse 36 m2. Ist die Seitenlänge x = 4 m, dann beträgt der Flächeninhalt der Terrasse 64 m2. Bei einer Seitenlänge von x = 10 m beträgt der Flächeninhalt 100 m2.
Hinweis: Hier kannst du auch andere Werte x eingesetzt haben. Um eine sinnvolle Lösung zu erhalten darf x weder kleiner 0 m noch größer als 20 m sein. In den Fällen würdest du einen negativen Flächeninhalt erhalten.
b)
Erstellt von: Elena Jedtke (Diskussion)