Quadratische Funktionen erforschen/Die Parameter der Normalform: Unterschied zwischen den Versionen
Aus ZUM-Unterrichten
Main>Elena Jedtke KKeine Bearbeitungszusammenfassung |
Main>Elena Jedtke KKeine Bearbeitungszusammenfassung |
||
Zeile 236: | Zeile 236: | ||
[[Datei:Binoculars-1026426 640.jpg|rahmenlos|links|Ausblick|100px]] | [[Datei:Binoculars-1026426 640.jpg|rahmenlos|links|Ausblick|100px]] | ||
Die auf dieser Seite gewonnen '''Erkenntnisse können kombiniert werden''' und ergeben quadratische | Die auf dieser Seite gewonnen '''Erkenntnisse können kombiniert werden''' und ergeben quadratische Funktionen der Form <math>y=ax^2+bx+c</math>. Diese Form heißt '''Normalform'''. | ||
Auf der [[Quadratische Funktionen erforschen/Die Normalform|nächsten Seite]] lernst du diese Variante quadratischer Funktionen genauer kennen. Außerdem befinden sich noch weitere Übungsaufgaben in dem Kapitel [[Quadratische Funktionen erforschen/Übungen|Übungen]]. | Auf der [[Quadratische Funktionen erforschen/Die Normalform|nächsten Seite]] lernst du diese Variante quadratischer Funktionen genauer kennen. Außerdem befinden sich noch weitere Übungsaufgaben in dem Kapitel [[Quadratische Funktionen erforschen/Übungen|Übungen]]. |
Version vom 3. Mai 2018, 13:47 Uhr
In diesem Kapitel stellen sich die Paramter der Normalform quadratischer Funktionen vor. Du kannst herausfinden,
|
Strecken, Stauchen und Spiegeln
Aufgabe 1
{{{2}}}
Aufgabe 2
{{{2}}}
Aufgabe 3
Knobelaufgabe
Aufgabe 4
Der Parameter b
Aufgabe 5
{{{2}}}
Aufgabe 6
Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 11-12) und einen Partner .
a)
b) Überlege dir einen Tipp für deinen Partner, wie er die passenden Terme beim Pferderennen herausfinden kann. Notiere den Tipp in deinem Hefter.
c) Vergleiche deinen Tipp mit dem deines Partners an dich.
Aufgabe 7
Der Parameter c
Aufgabe 8
{{{2}}}
Aufgabe 10
Zusammenfassung der wichtigsten Inhalte
Hier sind die Merksätze, die dir auf dieser Seite begegnet sind noch einmal gesammelt dargestellt: |
Die auf dieser Seite gewonnen Erkenntnisse können kombiniert werden und ergeben quadratische Funktionen der Form . Diese Form heißt Normalform.
Auf der nächsten Seite lernst du diese Variante quadratischer Funktionen genauer kennen. Außerdem befinden sich noch weitere Übungsaufgaben in dem Kapitel Übungen.
Erstellt von: Elena Jedtke (Diskussion)