Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
 
(Eine dazwischenliegende Version von einem anderen Benutzer wird nicht angezeigt)
Zeile 4: Zeile 4:
'''Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen (positiven) Stammbruch der Form <math>\textstyle \frac{1}{n}</math> mit <math>n \in \mathbb{N}^*</math> als Exponenten haben.'''  
'''Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen (positiven) Stammbruch der Form <math>\textstyle \frac{1}{n}</math> mit <math>n \in \mathbb{N}^*</math> als Exponenten haben.'''  


== Die Graphen der Funktionen f(x) = x<sup>1/n</sup>, n <small>&isin;</small> IN<sup>*</sup> ==
==Die Graphen der Funktionen f(x) = x<sup>1/n</sup>, n <small>&isin;</small> IN<sup>*</sup>==


=== Funktionsgraph kennenlernen ===
===Funktionsgraph kennenlernen===


{{Box|1=Aufgabe 1|2=  
{{Box|1=Aufgabe 1|2=  
Zeile 24: Zeile 24:
|3=Arbeitsmethode}}
|3=Arbeitsmethode}}


=== Vergleich mit Funktionen aus Stufe 2 ===
===Vergleich mit Funktionen aus Stufe 2===


{{Box|1=Aufgabe 2|2=  
{{Box|1=Aufgabe 2|2=  
Zeile 43: Zeile 43:
|3=Arbeitsmethode}}
|3=Arbeitsmethode}}


== Bezeichungen: Potenzen und Wurzeln ==
==Bezeichungen: Potenzen und Wurzeln==


Wir betrachten hier Potenzfunktionen mit <math>f(x)=x^{\frac 1 n}</math> , <math>n \in \mathbb{N}^*.</math>
Wir betrachten hier Potenzfunktionen mit <math>f(x)=x^{\frac 1 n}</math> , <math>n \in \mathbb{N}^*.</math>
Zeile 58: Zeile 58:




=== Beispiel: Quadratwurzeln ===
===Beispiel: Quadratwurzeln===


[[Datei:Diagonale_Potenzfunktionen.jpg|right|165px]]  
[[Datei:Diagonale_Potenzfunktionen.jpg|right|165px]]  
Beispielsweise ergibt sich die Länge der '''Diagonalen B in einem Quadrat''' der Seitenlänge a<math>=</math>1 über den Satz des Pythagoras <math>\left( a^2 \!\,+ a^2 = B^2 \right)</math> zu:
Beispielsweise ergibt sich die Länge der '''Diagonalen B in einem Quadrat''' der Seitenlänge a<math>=</math>1 über den Satz des Pythagoras <math>\left( a^2 \!\,+ a^2 = B^2 \right)</math> zu:
:<math>a^2 + a^2 = 2 \cdot a^2 = 2 \cdot 1^2 = 2 =B^2 \quad \Rightarrow</math> <math>\quad B = \pm \sqrt{2} = \pm 2^{\frac 1 2}.</math>
:<math>a^2 + a^2 = 2 \cdot a^2 = 2 \cdot 1^2 = 2 =B^2 \quad \Rightarrow</math> <math>\quad B = \pm \sqrt{2} = \pm 2^{\frac 1 2}.</math>
Die Lösung <font style="vertical-align:15%;"><math>\textstyle d=-\sqrt{2}</math></font> ergibt hier keinen Sinn, da wir nur Längen in der realen Welt betrachten.
Die Lösung <font style="vertical-align:15%;"><math>\textstyle d=-\sqrt{2}</math></font> ergibt hier keinen Sinn, da wir nur Längen in der realen Welt betrachten.


[[Bild:diagonale3.jpg|right|170px]]
[[Bild:diagonale3.jpg|right|170px]]
Auch die Länge der '''Raumdiagonale C im Einheitswürfel''' (das ist ein Würfel mit der Kantenlänge a=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: <math>B^2 + \!\,a^2 = C^2</math>) zu:
Auch die Länge der '''Raumdiagonale C im Einheitswürfel''' (das ist ein Würfel mit der Kantenlänge a=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: <math>B^2 + \!\,a^2 = C^2</math>) zu:
:<math>\sqrt{2}^2 + 1^2 = 2 + 1 = 3 = C^2 \quad \Rightarrow</math> <math> \quad C = \pm \sqrt{3} = \pm 3^{\frac 1 2}.</math>
:<math>\sqrt{2}^2 + 1^2 = 2 + 1 = 3 = C^2 \quad \Rightarrow</math> <math> \quad C = \pm \sqrt{3} = \pm 3^{\frac 1 2}.</math>
Die Lösung ist also <font style="vertical-align:15%;"><math>\textstyle C = \sqrt{3}</math></font> angeben.
Die Lösung ist also <font style="vertical-align:15%;"><math>\textstyle C = \sqrt{3}</math></font> angeben.




===Beispiel: Kubikwurzel===


=== Beispiel: Kubikwurzel ===
Das Volumen V eines Würfels (lat.: "''cubus''") der Kantenlänge s<math>=</math>5 ergibt sich über:<br />


Das Volumen V eines Würfels (lat.: "''cubus''") der Kantenlänge s<math>=</math>5 ergibt sich über:<br />
:<math>V = s^3 = 5 \cdot 5 \cdot 5 = 5^3.</math>
:<math>V = s^3 = 5 \cdot 5 \cdot 5 = 5^3.</math>


Umgekehrt erhält man die Kantenlänge eines Würfels mit Volumen V<math>=</math>27 durch ziehen der 3.-Wurzel:
Umgekehrt erhält man die Kantenlänge eines Würfels mit Volumen V<math>=</math>27 durch ziehen der 3.-Wurzel:
:<math>\sqrt[3]{27}=\sqrt[3]{3\cdot 3 \cdot 3} = \sqrt[3]{3^3} = \sqrt[3]{3}^3 = 3.</math>
:<math>\sqrt[3]{27}=\sqrt[3]{3\cdot 3 \cdot 3} = \sqrt[3]{3^3} = \sqrt[3]{3}^3 = 3.</math>


== Einfluss von Parametern ==
==Einfluss von Parametern==




Zeile 96: Zeile 101:




== *Zum Weiterdenken: Definitionsbereich der Wurzelfunktionen ==
==*Zum Weiterdenken: Definitionsbereich der Wurzelfunktionen==
<small>(*Zusatzinformation, freilwillige Ergänzung)</small>
<small>(*Zusatzinformation, freilwillige Ergänzung)</small>


==== Einschränkung auf IR<sup>+</sup><sub>0</sub> ====
====Einschränkung auf IR<sup>+</sup><sub>0</sub>====


Gelegentlich findet man in Büchern oder auch im Internet folgende Darstellung: <math>\sqrt[3]{-8}= -2,</math>
Gelegentlich findet man in Büchern oder auch im Internet folgende Darstellung: <math>\sqrt[3]{-8}= -2,</math>


Wegen  
Wegen  
:(-2)<sup>3</sup> <math>=</math>-8  
 
:(-2)<sup>3</sup> <math>=</math>-8


erscheint das richtig zu sein, allerdings kann diese Festlegung zu Widersprüchen führen, wie das folgende Beispiel zeigt:  
erscheint das richtig zu sein, allerdings kann diese Festlegung zu Widersprüchen führen, wie das folgende Beispiel zeigt:  
Zeile 112: Zeile 118:


Um solche Fälle von Nicht-Eindeutigkeiten, aber auch um Fallunterscheidungen bei <math>f(x)=x^{\frac 1 n}</math> für gerade und ungerade n zu vermeiden, schränkt man den Definitionsbereich ID der Wurzelfunktionen grundsätzlich auf die nicht-negativen reellen Zahlen ein, also:
Um solche Fälle von Nicht-Eindeutigkeiten, aber auch um Fallunterscheidungen bei <math>f(x)=x^{\frac 1 n}</math> für gerade und ungerade n zu vermeiden, schränkt man den Definitionsbereich ID der Wurzelfunktionen grundsätzlich auf die nicht-negativen reellen Zahlen ein, also:
:<math>f(x) = \sqrt[n]{x}</math>  mit <math>n \in \mathbb{N}</math> und <math>\mathbb{D}=\mathbb{R}^+_0</math>
:<math>f(x) = \sqrt[n]{x}</math>  mit <math>n \in \mathbb{N}</math> und <math>\mathbb{D}=\mathbb{R}^+_0</math>


Zeile 122: Zeile 129:


[[Kategorie:Mathematik]]
[[Kategorie:Mathematik]]
[[Kategorie:ZUM2Edutags]]
[[Kategorie:Interaktive Übung]]
[[Kategorie:Interaktive Übung]]
[[Kategorie:GeoGebra]]
[[Kategorie:Analysis]]
[[Kategorie:Potenzfunktionen]]

Aktuelle Version vom 24. April 2022, 10:35 Uhr


Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen (positiven) Stammbruch der Form mit als Exponenten haben.

Die Graphen der Funktionen f(x) = x1/n, n IN*

Funktionsgraph kennenlernen

Aufgabe 1

Rechts siehst Du den Graphen der Funktion für .

  1. Beschreibe den Graphen und achte dabei auf
    • Definitionsbereich
    • Monotonie
    • größte und kleinste Funktionswerte
  2. Gibt es Punkte, die allen Graphen dieser Bauart gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen.
    HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen 
GeoGebra
zu 1) Der Definitionsbereich ist IR+0. Der kleinste Funktionswert y0 wird für x0 angenommen; von da aus steigen die blauen Graphen streng monoton über alle Grenzen an.
zu 2) Man findet die Punkte (0;0) und (1;1) unabhängig von n in allen Graphen. Begründung: Es gilt 0r 0 und 1r 1 für alle .

Vergleich mit Funktionen aus Stufe 2

Aufgabe 2

Verleiche den neuen Graphen (blau) mit dem, den Du schon aus Stufe 1 und 2 dieses Kurses kennst (rot strichliert); mit dem Schieberegler kannst Du dazu wieder die Exponenten verändern.

  1. Beschreibe Gemeinsamkeiten und Unterschiede der Graphen! Achte dabei auf
    • Definitionsbereich
    • Symmetrie
    • Monotonie
    • größte und kleinste Funktionswerte
  2. Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen.
    HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen 
GeoGebra
zu 1) Der Definitionsbereich der blauen Graphen ist nicht-negativ. Der kleinste Funktionswert y0 wird für x0 angenommen; von da aus steigen die blauen Graphen steng monoton an.
zu 2) Man findet die Punkte (0;0) und (1;1) in allen blauen Graphen. Begründung: Es gilt stets 1r 1 für alle .

Bezeichungen: Potenzen und Wurzeln

Wir betrachten hier Potenzfunktionen mit ,

Merke

Wegen nennt man diese Funktionen auch Wurzelfunktionen. Ihr Definitionsbereich ist (wie die Aufgaben 1 und 2 gezeigt haben) IR+0. Beschränkt man sich auf diesen Definitonsbereich, dann ist die n-te Wurzelfunktion f mit die Umkehrfunktion zur Potenzfunktion g der Bauart g(x) xn und g die Umkehrfunktion zu f (Näheres zur Umkehrfunktion siehe nächstes Kapitel).

Im Falle n2 nennt man die Wurzel "Quadratwurzel" und man schreibt:

Im Falle n3 nennt man die Wurzel "Kubikwurzel", i. Z.: bzw. .

Den Grund für diese Bezeichnungen zeigen die folgenden Beispiele:


Beispiel: Quadratwurzeln

Diagonale Potenzfunktionen.jpg

Beispielsweise ergibt sich die Länge der Diagonalen B in einem Quadrat der Seitenlänge a1 über den Satz des Pythagoras zu:

Die Lösung ergibt hier keinen Sinn, da wir nur Längen in der realen Welt betrachten.

Diagonale3.jpg

Auch die Länge der Raumdiagonale C im Einheitswürfel (das ist ein Würfel mit der Kantenlänge a=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: ) zu:

Die Lösung ist also angeben.


Beispiel: Kubikwurzel

Das Volumen V eines Würfels (lat.: "cubus") der Kantenlänge s5 ergibt sich über:

Umgekehrt erhält man die Kantenlänge eines Würfels mit Volumen V27 durch ziehen der 3.-Wurzel:

Einfluss von Parametern

Aufgabe 3

Im Applet kannst Du die Parameter a und c mit den Schiebereglern verändern.

  1. Wie beeinflusst der Parameter a die Lage des Graphen?
  2. Wie beeinflusst der Parameter c die Lage des Graphen?
GeoGebra
zu 1.) Der Parameter a bewirkt für a>1 eine Streckung des Graphen in y-Richtung, für 0<a<1 eine Stauchung in y-Richtung; für a0 erhält man eine konstante Funktion mit f(x)c. Wird a negativ, so wird f zu einer monoton fallenden Funktion.
zu 2.) Der Parameter c bewirkt eine Verschiebung des kompletten Graphen in y-Richung, da zu jedem Funktionswert y der Wert c addiert wird.


*Zum Weiterdenken: Definitionsbereich der Wurzelfunktionen

(*Zusatzinformation, freilwillige Ergänzung)

Einschränkung auf IR+0

Gelegentlich findet man in Büchern oder auch im Internet folgende Darstellung:

Wegen

(-2)3 -8

erscheint das richtig zu sein, allerdings kann diese Festlegung zu Widersprüchen führen, wie das folgende Beispiel zeigt:


Um solche Fälle von Nicht-Eindeutigkeiten, aber auch um Fallunterscheidungen bei für gerade und ungerade n zu vermeiden, schränkt man den Definitionsbereich ID der Wurzelfunktionen grundsätzlich auf die nicht-negativen reellen Zahlen ein, also:

mit und



Als nächstes erfährst du etwas über Potenzfunktionen, die auch negative Stammbrüchen im Exponenten haben.