Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen
Main>Jan Wörler |
Keine Bearbeitungszusammenfassung |
||
(137 dazwischenliegende Versionen von 10 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
{{Navigation verstecken|{{Lernpfad Potenzfunktionen}}|Lernschritte einblenden|Lernschritte ausblenden}} | |||
__NOTOC__ | |||
'''Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen (positiven) Stammbruch der Form <math>\textstyle \frac{1}{n}</math> mit <math>n \in \mathbb{N}^*</math> als Exponenten haben.''' | |||
==Die Graphen der Funktionen f(x) = x<sup>1/n</sup>, n <small>∈</small> IN<sup>*</sup>== | |||
=== | ===Funktionsgraph kennenlernen=== | ||
{| | {{Box|1=Aufgabe 1|2= | ||
| | Rechts siehst Du den Graphen der Funktion <math>f(x)=x^{\frac 1 n}</math> für <math>n \in \{2,3,4,5,6\}</math>.<br /> | ||
| {{ | # Beschreibe den Graphen und achte dabei auf | ||
Verleiche den neuen Graphen (blau) mit dem, den Du schon aus Stufe 1 und 2 dieses Kurses kennst (rot | #* Definitionsbereich | ||
#* Monotonie | |||
#* größte und kleinste Funktionswerte | |||
# Gibt es Punkte, die allen Graphen dieser Bauart gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen. <br> <pre>HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen </pre> | |||
<ggb_applet height="450" width="900" showMenuBar="false" showResetIcon="true" id="vmtmy9jg" /> | |||
{{Lösung versteckt| | |||
: zu 1) Der Definitionsbereich ist IR<sup>+</sup><sub>0</sub>. Der kleinste Funktionswert y<math>=</math>0 wird für x<math>=</math>0 angenommen; von da aus steigen die blauen Graphen streng monoton über alle Grenzen an. | |||
: zu 2) Man findet die Punkte (0;0) und (1;1) unabhängig von n in allen Graphen. '''Begründung:''' Es gilt 0<sup>r</sup> <math>=</math>0 und 1<sup>r</sup> <math>=</math>1 für alle <math>r \in \mathbb{R}\backslash\{0 \}</math>. | |||
}} | |||
|3=Arbeitsmethode}} | |||
===Vergleich mit Funktionen aus Stufe 2=== | |||
{{Box|1=Aufgabe 2|2= | |||
Verleiche den neuen Graphen (blau) mit dem, den Du schon aus Stufe 1 und 2 dieses Kurses kennst (rot strichliert); mit dem Schieberegler kannst Du dazu wieder die Exponenten verändern. | |||
# Beschreibe Gemeinsamkeiten und Unterschiede der Graphen! Achte dabei auf | # Beschreibe Gemeinsamkeiten und Unterschiede der Graphen! Achte dabei auf | ||
#* Definitionsbereich | #* Definitionsbereich | ||
Zeile 19: | Zeile 34: | ||
#* größte und kleinste Funktionswerte | #* größte und kleinste Funktionswerte | ||
# Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen. <br> <pre>HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen </pre> | # Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen. <br> <pre>HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen </pre> | ||
: | <ggb_applet height="450" width="900" showMenuBar="false" showResetIcon="true" id="weqjncvn" /> | ||
{{Lösung versteckt| | |||
: zu 1) Der Definitionsbereich der blauen Graphen ist nicht-negativ. Der kleinste Funktionswert y<math>=</math>0 wird für x<math>=</math>0 angenommen; von da aus steigen die blauen Graphen steng monoton an. | |||
: zu 2) Man findet die Punkte (0;0) und (1;1) in allen blauen Graphen. Begründung: Es gilt stets 1<sup>r</sup> <math>=</math>1 für alle <math>r \in \mathbb{R}\setminus\{0\}</math>. | |||
}} | }} | ||
}}< | |3=Arbeitsmethode}} | ||
|| < | |||
==Bezeichungen: Potenzen und Wurzeln== | |||
|} | |||
Wir betrachten hier Potenzfunktionen mit <math>f(x)=x^{\frac 1 n}</math> , <math>n \in \mathbb{N}^*.</math> | |||
{{Box|1=Merke|2= Wegen <math>x^{\frac{1}{n}}:=\sqrt[n]{x}</math> nennt man diese Funktionen auch ''Wurzelfunktionen''. Ihr Definitionsbereich ist (wie die Aufgaben 1 und 2 gezeigt haben) IR<sup>+</sup><sub>0</sub>. Beschränkt man sich auf diesen Definitonsbereich, dann ist die n-te Wurzelfunktion f mit <math>f(x)=x^{\frac 1 n}</math> die Umkehrfunktion zur Potenzfunktion g der Bauart g(x)<math>=</math> x<sup>n</sup> und g die Umkehrfunktion zu f (Näheres zur ''Umkehrfunktion'' siehe [[Potenzfunktionen_4._Stufe#Potenzfunktionen_und_ihre_Umkehrfunktionen | nächstes Kapitel]]). | |||
Im Falle n<math>=</math>2 nennt man die Wurzel "''Quadratwurzel''" und man schreibt: | |||
:<math>x^{\frac{1}{2}} = \sqrt[2]{x} =: \sqrt{x}</math> | |||
Im Falle n<math>=</math>3 nennt man die Wurzel "''Kubikwurzel''", i. Z.: <font style="vertical-align:27%;"><math>x^{\frac{1}{3}}</math></font> bzw. <math>\sqrt[3]{x}</math>. | |||
|3=Merksatz}} | |||
Den Grund für diese Bezeichnungen zeigen die folgenden Beispiele: | |||
===Beispiel: Quadratwurzeln=== | |||
[[Datei:Diagonale_Potenzfunktionen.jpg|right|165px]] | |||
Beispielsweise ergibt sich die Länge der '''Diagonalen B in einem Quadrat''' der Seitenlänge a<math>=</math>1 über den Satz des Pythagoras <math>\left( a^2 \!\,+ a^2 = B^2 \right)</math> zu: | |||
== | :<math>a^2 + a^2 = 2 \cdot a^2 = 2 \cdot 1^2 = 2 =B^2 \quad \Rightarrow</math> <math>\quad B = \pm \sqrt{2} = \pm 2^{\frac 1 2}.</math> | ||
Die Lösung <font style="vertical-align:15%;"><math>\textstyle d=-\sqrt{2}</math></font> ergibt hier keinen Sinn, da wir nur Längen in der realen Welt betrachten. | |||
[[Bild:diagonale3.jpg|right|170px]] | |||
:<math> | Auch die Länge der '''Raumdiagonale C im Einheitswürfel''' (das ist ein Würfel mit der Kantenlänge a=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: <math>B^2 + \!\,a^2 = C^2</math>) zu: | ||
:<math>\sqrt{2}^2 + 1^2 = 2 + 1 = 3 = C^2 \quad \Rightarrow</math> <math> \quad C = \pm \sqrt{3} = \pm 3^{\frac 1 2}.</math> | |||
Die Lösung ist also <font style="vertical-align:15%;"><math>\textstyle C = \sqrt{3}</math></font> angeben. | |||
:<math>\ | |||
===Beispiel: Kubikwurzel=== | |||
Das Volumen V eines Würfels (lat.: "''cubus''") der Kantenlänge s<math>=</math>5 ergibt sich über:<br /> | |||
:<math>V = s^3 = 5 \cdot 5 \cdot 5 = 5^3.</math> | |||
Umgekehrt erhält man die Kantenlänge eines Würfels mit Volumen V<math>=</math>27 durch ziehen der 3.-Wurzel: | |||
:<math>\sqrt[3]{27}=\sqrt[3]{3\cdot 3 \cdot 3} = \sqrt[3]{3^3} = \sqrt[3]{3}^3 = 3.</math> | |||
== | ==Einfluss von Parametern== | ||
{{Box|1=Aufgabe 3|2= | |||
Im Applet kannst Du die Parameter a und c mit den Schiebereglern verändern.<br /> | |||
# Wie beeinflusst der Parameter a die Lage des Graphen? | |||
# Wie beeinflusst der Parameter c die Lage des Graphen? | |||
<ggb_applet height="450" width="800" showMenuBar="false" showResetIcon="true" id="fwtzatzv" /> | |||
{{Lösung versteckt| | |||
: zu 1.) Der Parameter a bewirkt für a>1 eine Streckung des Graphen in y-Richtung, für 0<a<1 eine Stauchung in y-Richtung; für a<math>=</math>0 erhält man eine konstante Funktion mit f(x)<math>=</math>c. Wird a negativ, so wird f zu einer monoton fallenden Funktion.<br />zu 2.) Der Parameter c bewirkt eine Verschiebung des kompletten Graphen in y-Richung, da zu jedem Funktionswert y der Wert c addiert wird. | |||
}}<br> | |||
|3=Arbeitsmethode}} | |||
==*Zum Weiterdenken: Definitionsbereich der Wurzelfunktionen== | |||
<small>(*Zusatzinformation, freilwillige Ergänzung)</small> | |||
====Einschränkung auf IR<sup>+</sup><sub>0</sub>==== | |||
< | Gelegentlich findet man in Büchern oder auch im Internet folgende Darstellung: <math>\sqrt[3]{-8}= -2,</math> | ||
Wegen | |||
:(-2)<sup>3</sup> <math>=</math>-8 | |||
erscheint das richtig zu sein, allerdings kann diese Festlegung zu Widersprüchen führen, wie das folgende Beispiel zeigt: | |||
:<math>-2 = \sqrt[3]{-8} = (-8)^{\frac{1}{3}} = (-8)^{\frac{2}{6}} = \left( (-8)^2 \right)^{\frac{1}{6}} = \left( (8)^2 \right)^{\frac{1}{6}} = (8)^{\frac{2}{6}} = (8)^{\frac{1}{3}} = \sqrt[3]{8} = 2.</math> | :<math>-2 = \sqrt[3]{-8} = (-8)^{\frac{1}{3}} = (-8)^{\frac{2}{6}} = \left( (-8)^2 \right)^{\frac{1}{6}} = \left( (8)^2 \right)^{\frac{1}{6}} = (8)^{\frac{2}{6}} = (8)^{\frac{1}{3}} = \sqrt[3]{8} = 2.</math> | ||
Um solche Fälle von Nicht-Eindeutigkeiten | Um solche Fälle von Nicht-Eindeutigkeiten, aber auch um Fallunterscheidungen bei <math>f(x)=x^{\frac 1 n}</math> für gerade und ungerade n zu vermeiden, schränkt man den Definitionsbereich ID der Wurzelfunktionen grundsätzlich auf die nicht-negativen reellen Zahlen ein, also: | ||
:<math>f(x) = \sqrt[n]{x}</math> mit <math>n \in \mathbb{N}</math> und <math>\mathbb{D}=\mathbb{R} | |||
:<math>f(x) = \sqrt[n]{x}</math> mit <math>n \in \mathbb{N}</math> und <math>\mathbb{D}=\mathbb{R}^+_0</math> | |||
---- | |||
'''Als nächstes erfährst du etwas über Potenzfunktionen, die auch negative Stammbrüchen im Exponenten haben.'''<br /> | |||
== | {{Fortsetzung|weiter=Weiter|weiterlink=Potenzfunktionen_-_4._Stufe}} | ||
[[Kategorie:Mathematik]] | |||
[[Kategorie:Interaktive Übung]] | |||
[[Kategorie:Analysis]] | |||
[[Kategorie:Potenzfunktionen]] |
Aktuelle Version vom 24. April 2022, 10:35 Uhr
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen (positiven) Stammbruch der Form mit als Exponenten haben.
Die Graphen der Funktionen f(x) = x1/n, n ∈ IN*
Funktionsgraph kennenlernen
Rechts siehst Du den Graphen der Funktion für .
- Beschreibe den Graphen und achte dabei auf
- Definitionsbereich
- Monotonie
- größte und kleinste Funktionswerte
- Gibt es Punkte, die allen Graphen dieser Bauart gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen.
HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen
- zu 1) Der Definitionsbereich ist IR+0. Der kleinste Funktionswert y0 wird für x0 angenommen; von da aus steigen die blauen Graphen streng monoton über alle Grenzen an.
- zu 2) Man findet die Punkte (0;0) und (1;1) unabhängig von n in allen Graphen. Begründung: Es gilt 0r 0 und 1r 1 für alle .
Vergleich mit Funktionen aus Stufe 2
Verleiche den neuen Graphen (blau) mit dem, den Du schon aus Stufe 1 und 2 dieses Kurses kennst (rot strichliert); mit dem Schieberegler kannst Du dazu wieder die Exponenten verändern.
- Beschreibe Gemeinsamkeiten und Unterschiede der Graphen! Achte dabei auf
- Definitionsbereich
- Symmetrie
- Monotonie
- größte und kleinste Funktionswerte
- Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen.
HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen
- zu 1) Der Definitionsbereich der blauen Graphen ist nicht-negativ. Der kleinste Funktionswert y0 wird für x0 angenommen; von da aus steigen die blauen Graphen steng monoton an.
- zu 2) Man findet die Punkte (0;0) und (1;1) in allen blauen Graphen. Begründung: Es gilt stets 1r 1 für alle .
Bezeichungen: Potenzen und Wurzeln
Wir betrachten hier Potenzfunktionen mit ,
Wegen nennt man diese Funktionen auch Wurzelfunktionen. Ihr Definitionsbereich ist (wie die Aufgaben 1 und 2 gezeigt haben) IR+0. Beschränkt man sich auf diesen Definitonsbereich, dann ist die n-te Wurzelfunktion f mit die Umkehrfunktion zur Potenzfunktion g der Bauart g(x) xn und g die Umkehrfunktion zu f (Näheres zur Umkehrfunktion siehe nächstes Kapitel).
Im Falle n2 nennt man die Wurzel "Quadratwurzel" und man schreibt:
Den Grund für diese Bezeichnungen zeigen die folgenden Beispiele:
Beispiel: Quadratwurzeln
Beispielsweise ergibt sich die Länge der Diagonalen B in einem Quadrat der Seitenlänge a1 über den Satz des Pythagoras zu:
Die Lösung ergibt hier keinen Sinn, da wir nur Längen in der realen Welt betrachten.
Auch die Länge der Raumdiagonale C im Einheitswürfel (das ist ein Würfel mit der Kantenlänge a=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: ) zu:
Die Lösung ist also angeben.
Beispiel: Kubikwurzel
Das Volumen V eines Würfels (lat.: "cubus") der Kantenlänge s5 ergibt sich über:
Umgekehrt erhält man die Kantenlänge eines Würfels mit Volumen V27 durch ziehen der 3.-Wurzel:
Einfluss von Parametern
Im Applet kannst Du die Parameter a und c mit den Schiebereglern verändern.
- Wie beeinflusst der Parameter a die Lage des Graphen?
- Wie beeinflusst der Parameter c die Lage des Graphen?
- zu 1.) Der Parameter a bewirkt für a>1 eine Streckung des Graphen in y-Richtung, für 0<a<1 eine Stauchung in y-Richtung; für a0 erhält man eine konstante Funktion mit f(x)c. Wird a negativ, so wird f zu einer monoton fallenden Funktion.
zu 2.) Der Parameter c bewirkt eine Verschiebung des kompletten Graphen in y-Richung, da zu jedem Funktionswert y der Wert c addiert wird.
*Zum Weiterdenken: Definitionsbereich der Wurzelfunktionen
(*Zusatzinformation, freilwillige Ergänzung)
Einschränkung auf IR+0
Gelegentlich findet man in Büchern oder auch im Internet folgende Darstellung:
Wegen
- (-2)3 -8
erscheint das richtig zu sein, allerdings kann diese Festlegung zu Widersprüchen führen, wie das folgende Beispiel zeigt:
Um solche Fälle von Nicht-Eindeutigkeiten, aber auch um Fallunterscheidungen bei für gerade und ungerade n zu vermeiden, schränkt man den Definitionsbereich ID der Wurzelfunktionen grundsätzlich auf die nicht-negativen reellen Zahlen ein, also:
- mit und
Als nächstes erfährst du etwas über Potenzfunktionen, die auch negative Stammbrüchen im Exponenten haben.