Signifikanztest für binomialverteilte Zufallsgrößen/Wiederholung Binomialverteilung: Unterschied zwischen den Versionen
K (Elena Jedtke verschob die Seite Wiederholung Binomialverteilung nach Signifikanztest für binomialverteilte Zufallsgrößen/Wiederholung Binomialverteilung: Unterseite eines Lernpfads) |
K (gestufte Hilfen leicht verändert) Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 19: | Zeile 19: | ||
Bereche folgende Wahrscheinlichkeiten!<br><br> | Bereche folgende Wahrscheinlichkeiten!<br><br> | ||
b) Das in der Stichprobe '''genau''' 710 Menschen den Klimawandel als Bedrohung ansehen. | b) Das in der Stichprobe '''genau''' 710 Menschen den Klimawandel als Bedrohung ansehen. | ||
{{Lösung versteckt|1=Nutze die Formel von Bernoulli!<br> Gib im Taschenrechner die Funktion binompdf(n,p,k)ein.<br> n die Anzahl der Versuche(Befragungen), p die Wahrscheinlichkeit für einen Treffer und k die Anzahl der Treffer. | {{Lösung versteckt|1=Nutze die Formel von Bernoulli!<br> Gib im Taschenrechner die Funktion binompdf(n,p,k)ein.<br> '''n''' die Anzahl der Versuche(Befragungen), '''p''' die Wahrscheinlichkeit für einen Treffer und '''k''' die Anzahl der Treffer. | ||
|2=gestufte Hilfe einblenden|3= gestufte Hilfe ausblenden}} | |2=gestufte Hilfe einblenden|3= gestufte Hilfe ausblenden}} | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Zeile 28: | Zeile 28: | ||
c) Das '''höchstens''' 680 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen. | c) Das '''höchstens''' 680 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen. | ||
{{Lösung versteckt|1=Nutze die Formel für die | {{Lösung versteckt|1= Höchtes heißt es können 1,2,3, ...680 der Befragten den Klimawandel als Bedrohung ansehen.<br> | ||
Nutze zur Berechnung die Formel für die kumulierten Wahrscheinlichkeit (siehe Übung 1).<br> In dem Taschenrechner kannst du die kumulierte Wahrscheinlichkeiten über die Funktion binomcdf(n,p,k)berechnen. | |||
|2=gestufte Hilfe einblenden|3= gestufte Hilfe ausblenden}} | |2=gestufte Hilfe einblenden|3= gestufte Hilfe ausblenden}} | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Zeile 37: | Zeile 38: | ||
d) Das '''mindestens''' 740 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen. | d) Das '''mindestens''' 740 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen. | ||
{{Lösung versteckt|1= Wahrscheinlichkeiten für mindetstens werden über die Gegenwahrscheinlichkeit berechnet:<br> P(mindestens k)=1 - P(höchstens k - 1)<br> Die Wahrscheinlichkeit für höchstens kannst du wieder mit der Funktion binomcdf(n,p,k)berechnen. | {{Lösung versteckt|1= Wahrscheinlichkeiten für mindetstens werden über die Gegenwahrscheinlichkeit berechnet:<br> '''P(mindestens k)= 1 - P(höchstens k - 1)'''<br> Die Wahrscheinlichkeit für höchstens kannst du wieder mit der Funktion binomcdf(n,p,k)berechnen. | ||
|2=gestufte Hilfe einblenden|3= gestufte Hilfe ausblenden}} | |2=gestufte Hilfe einblenden|3= gestufte Hilfe ausblenden}} | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= |
Version vom 21. November 2019, 09:58 Uhr
Hier wiederholst du nochmal kurz die wichtigsten Inhalte der Binomialverteilung.
Fülle den Lückentext aus!
Ein Zufallsexperiment mit genau zwei Ergebnissen (Treffer und Niete) nennt man . Wird solch ein Experiment n-mal wiederholt, und sind die Versuche unabhängig voneinander, erhält man eine der Länge n. Ist p die Trefferwahrscheinlichkeit und X eine Zufallsvariable, welche die Anzahl k der Treffer angibt, dann kann die Wahrscheinlichkeit für k Treffer durch die () berechnet werden. Die Wahrscheinlichkeitsverteilung für X heißt mit den Parametern n und p. Neben der Binomialverteilung benötigt man auch häufig die zugehörige , für deren Wahrscheinlichkeit die Schreibweise üblich ist. Die kumulierten Wahrscheinlichkeiten werden wie folgt berechnet:
Formel von BernoulliBinomialverteilungBernoulli-KetteVerteilungsfunktionBernoulli-Experiment
Vor allem der Umgang mit kumuliertern Wahrscheinlichkeiten und die grafische Anschauung der Binomialverteilung sind wichtig für die Durchführung eines Signifikanztests. Prüfe und wiederhole dein Können dazu in Übung 2.
Es soll die Aussage "71 % der Menschen in Deutschland sehen den Klimawandel als Bedrohung an" überprüft werden. Dazu werden 1000 Menschen in Deutschland befragt.
a) Skizziere die zugehörige Binomialverteilung.
Bereche folgende Wahrscheinlichkeiten!
b) Das in der Stichprobe genau 710 Menschen den Klimawandel als Bedrohung ansehen.
c) Das höchstens 680 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen.
d) Das mindestens 740 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen.
Super gemacht! Dann geht es jetzt weiter mit dem Signifikanztest!