Einführung in die Differentialrechnung/Von der mittleren zur momentanen Änderungsrate
Für diesen Abschnitt haben Sie 60 Minuten Zeit.
In diesem Abschnitt soll die erste Einstiegsaufgabe, die Sie im Unterricht bearbeitet haben, vertieft werden. Sie üben, mittlere Änderungsraten zu bestimmen und damit momentane Änderungsraten anzunähern.
Blumenvase
In der Einstiegsaufgabe haben Sie in Gefäßen gleichmäßig Wasser eingelassen und die Höhe des Wasserstandes gemessen. Betrachten wir nun die abgebildete Vase, in die ebenfalls gleichmäßig Wasser eingelassen wird. Die Tabelle stellt dar, wie sich die Wasserhöhe (hier gemessen vom Tischboden) in der Vase beim Einfüllvorgang im Zeitverlauf verändert. Im Gegensatz zum Vorgehen zur Einstiegsaufgabe wurde nun alle drei Sekunden die Höhe des Wasserstandes gemessen.
Zeit (Sekunden) Höhe (cm) 0 0,51 3 1,33 6 2,74 9 4,91 12 8,00 15 12,17 18 17,58
Mittlere Änderungsrate
Die mittlere Änderungsrate gibt an, wie viel Zentimeter pro Sekunde die Wasserhöhe in einem Zeitabschnitt im Schnitt zunimmt.
Bsp.
In den drei Sekunden zwischen Sekunde 6 und 9 steigt das Wasser um 4,91 cm - 2,74 cm = 2,17 cm. Daher nimmt das Wasser pro Sekunde um 2,17 cm : 3 s = 0,72 cm/s zu. Die mittlere Änderungsrate im Zeitabschnitt von Sekunde 6 und Sekunde 9 beträgt daher 0,72 cm pro Sekunde (abgekürzte Schreibweise: 0,72 cm/s)
Berechnen Sie anhand der obigen Tabelle und mit dem Taschenrechner die mittlere Änderungsrate in den angegebenen Zeitabschnitten:
a) in den ersten drei Sekunden
b) zwischen Sekunde 3 und 6
c) zwischen Sekunde 12 und 15
d) zwischen Sekunde 3 und 12
e) in den ersten 18 Sekunden
a) 0,273 cm/s
b) 0,47 cm/s
c) 1,39 cm/s
d) 0,741 cm/s.
a) In den ersten drei Sekunden steigt die Wasserhöhe um 1,33 cm - 0,51 cm = 0,82 cm. Pro Sekunde steigt es daher um 0,82 cm : 3 s = 0,273 cm/s.
b) In den drei Sekunden von Sekunde 3 auf Sekunde 6 nimmt die Wasserhöhe um 2,74 cm - 1,33 cm = 1,41 cm zu. Die mittlere Änderungsrate ist daher 1,41 cm : 3 s = 0,47 cm/s.
c) Zwischen Sekunde 12 und 15 liegen wiederum 3 Sekunden. In diesem Zeitraum steigt das Wasser um 12,17 cm - 8 cm = 4,17 cm. Pro Sekunde nimmt das Wasser in diesem Zeitraum daher um 4,17 cm : 3 s = 1,39 cm/s zu.
d) Bei Sekunde 3 beträgt die Wasserhöhe 1,33 cm, während sie bei Sekunde 12 genau 8 cm beträgt. In diesen 9 Sekunden ist die Wasserhöhe also um 8 cm - 1,33 cm = 6,67 cm gesteigen. Die mittlere Änderungsrate zwischen Sekunde 3 und 12 beträgt daher 6,67 cm : 9 s = 0,741 cm/s.
Momentane Änderungsrate
Möchte man nun für einen Zeitpunkt (z.B. Sekunde 12) eine Änderungsrate bestimmen, so spricht man von der momentanen Änderungsrate. Wie man die momentane Änderungsrate näherungsweise bestimmen kann, erfahren Sie in der folgenden Aufgabe.
Um näherungsweise die momentane Änderungsrate für den Zeitpunkt t0 = 12 Sekunden zu erhalten, bestimmen Sie mit Hilfe der Schieberegler des Applets und mit Hilfe des Taschenrechners die mittlere Änderungsrate im Zeitintervall von ...
a) ... t0 = 12 Sekunden und t1 = 13 Sekunden
b) ... t0 = 12 Sekunden und t1 = 12,5 Sekunden
c) ... t0= 12 Sekunden und t1= 12,1 Sekunden
d) ... t0 = 12 Sekunden und t1 = 12,05 Sekunden
e) Schätzen Sie aufgrund der Ergebnisse aus a) - d), welches Ergebnis für die momentane Änderungsrate bei Sekunde 12 Ihnen plausibel erscheint.
a) 1,261 cm/s.
b) 1,2302 cm/s
c) 1,206 cm/s
d) 1,204 cm/s
a) Bei Sekunde 12 beträgt die Wasserhöhe genau 8 cm, während das Wasser bei Sekunde 13 die Höhe 9,261 cm hat. In der einen Sekunden ist es also um 9,261 - 8 cm = 1,261 cm gestiegen. Die mittlere Änderungsrate in diesem Zeitabschnitt beträgt daher 1,261 cm/s.
b) 8,6151 cm - 8 cm = 0,6151 cm => 0,6151 cm : 0,5 s = 1,2302 cm/s
c) 1,206 cm/s
d) 1,204 cm/s
Wenn der Wasserstand als Funktion von der Zeit mit einer Funktionsvorschrift gegeben ist, kann man die mittleren Änderungsraten auch rechnerisch bestimmen.
Die Höhe des Wasserstandes der bisher betrachteten Vase kann mit der Funktion w(t)=0,001(t+8)3 beschrieben werden. Hierbei gibt w(t) die Höhe des Wasserstandes in cm zu einem Zeitpunkt t (in Sekunden) an.
a) Bestimmen Sie den Näherungswert für die momentane Änderungsrate noch genauer, indem Sie mit Hilfe der Funktionsvorschrift die mittlere Änderungsrate im Zeitabschnitt von Sekunde 12 bis 12,001 bestimmen.
b) Beschreiben Sie, wie Sie vorgehen müssten, um einen möglichst exakten Wert für die momentane Änderungsrate bei Sekunde 12 zu erhalten.
a)
=> Höhenzunahme:
=> mittlere Änderungsrate:
Hausaufgaben:
- Seite 155/6, Seite 156/7 (Bigalke-Köhler, Mathematik 1, Hessen, Cornelsen-Verlag 2009, ISBN 978-3-464-57449-2) bzw.
- Seite 40/6, Seite 41/7 (Bigalke-Köhler, Mathematik Band 1, Analysis, Cornelsen-Verlag 2007, ISBN 978-3-06-000478-2) bzw.
- Seite 41/2, Seite 45/1c, Seite 45/3 (Lambacher-Schweizer, Mathematik Leistungskurs, Klett-Verlag 2011, ISBN 978-3-12-735601-4)
Testen
Sie sollten nach dem Test sagen können:
Ich kann mittlere Änderungsraten bestimmen, wenn die Werte in einer Wertetabelle vorliegen oder die Funktionsvorschrift gegeben ist.
Ich kann mit mittleren Änderungsraten die momentane Änderungsrate annähern.
Aus technischen Gründen werden an manchen Stellen bei den Aufgaben eckige Klammern statt der in diesem Zusammenhang sonst üblichen runden Klammern verwendet.
1a) Mit 10 Jahren war Peter 141 cm groß. Mit 12 Jahren war er 149 cm. Mit welcher mittleren Änderungsrate ist Peter während der zwei Jahre gewachsen? (4 cm/Jahr) (!8 cm/Jahr) (!2 cm/Jahr) (!6 cm/Jahr) (!10 cm/Jahr)
1b) Ein Auto beschleunigt von 0 auf 100 gemäß der Formel s[t]=1,5t², wobei s[t] die zurückgelegte Strecke zu einem bestimmten Zeitpunkt t in Sekunden angibt. Sara möchte einen möglichst guten Näherungswert für die momentane Änderungsrate zum Zeitpunkt t=4 Sekunden berechnen. Welche beiden der folgenden Funktionswerte sollte sie dafür verwenden? (s[4]) (!s[4,01]) (!s[4,05]) (!s[4,001]) (s[4,0001]) (!s[4,5])
1c) Beziehen sich die folgenden Aussagen auf die mittlere oder die momentane Änderungsrate?
"Ich bin mit 110km/h geblitzt worden, wo nur 80 km/h erlaubt waren!" (Momentane Änderungsrate) (!Mittlere Änderungsrate)
"Unsere Sonnenblumen im Garten sind im letzten Monat durchschnittlich 1cm am Tag gewachsen." (!Momentane Änderungsrate) (Mittlere Änderungsrate)
"Bei unserer Hinfahrt zum Urlaub waren wir im Schnitt nur mit 80 km/h unterwegs, da die Autobahn so überfüllt war." (!Momentane Änderungsrate) (Mittlere Änderungsrate)
"Der ICE hat eine Höchstgeschwindigkeit von 330 km/h." (Momentane Änderungsrate) (!Mittlere Änderungsrate)
Wenn Ihre Lösungsrate mindestens 75% beträgt, gehen Sie zu den weiteren Aufgaben. Wenn Sie weniger als 75% richtig haben, überprüfen Sie genau Ihre Fehler und versuchen Sie zu verstehen, was Sie falsch gemacht haben.