Funktion - eine eindeutige Zuordnung

Aus ZUM-Unterrichten

Lernpfad
Funktion - eine eindeutige Zuordnung



Im Rahmen dieses Lernpfades solltest du gewisse Lernziele und Grundkompetenzen für die schriftliche Reifeprüfung erwerben.

Funktionen
Funktionen sind Zuordnungen mit einer besonderen Eigenschaft: Als Funktion bezeichnet man eine Zuordnung, die jedem Argument genau einen Wert, den Funktionswert, zuordnet. Vereinfacht gesagt: "Eine Funktion ist eine eindeutige Zuordnung."

Musterbeispiel

Handel es sich bei den dargestellten Zuordnungen um Funktionen? Begründe.

  1. Jedem Menschen wird seine leibliche Mutter zugeordnet.
  2. Jeder Mutter wird ihr Kind zugeordnet
  3. 1 Wertetabelle.png
  4. Halbe ellipse.png

Lösung
  1. Da jeder Mensch (Argument) nur eine leibliche Mutter (Wert) besitzt, handelt es sich bei dieser Zuordnung um eine eindeutige Zuordnung, also um eine Funktion.
  2. Da eine Mutter (Argument) mehrere Kinder (Wert) haben kann, handelt es sich bei dieser Zuordnung um keine eindeutige Zuordnung, also um keine Funktion.
  3. Da jedem Argument a genau ein Wert g(a) zugeordnet ist, handelt es sich um die Wertetabelle einer Funktion.
  4. Da einigen Argumenten mehrere Werte zugeordnet werden, handelt es sich nicht um einen Funktionsgraphen.

Üben
Handelt es sich bei der Zuordnung (teilweise in verbaler Darstellung) um eine Funktion? Begründe!
  1. Jedem in Österreich angemeldeten Auto wird eine Autonummer zugeordnet.
  2. 2 Wertetabelle.png
  3. Jedem erwachsenen Österreicher wird eine Sozialversicherungsnummer zugeordnet.
  4. Funktion zuordnung.png

Lösung



Siehe auch