Achsensymmetrische Vierecke und Dreiecke
In diesem Lernpfad wollen wir achsensymmetrische Vierecke und Dreicke kennenlernen. Dazu wollen wir als erstes nochmal wiederholen, was sich hinter dem Begriff der Achsensymmtrie verbirgt.
Notiere alle Merksätze und Definitionen in dein Heft!
- Zeitbedarf
- 45 Min.
- Material
- dein Heft, Stifte und ein Lineal!
1.Station: Wiederholung zur Achsensymmetrie
Kannst du dich noch an den Begriff der Achsensymmetrie erinnern? Oder wann eine Figur achsensymmetrisch ist? Nein? Dann wollen wir uns diese Begriffe zusammen erarbeiten. Vielleicht fällt dir ja dann wieder ein, was es damit auf sich hat. Also los geht´s!
In unserem alltäglichen Leben gibt es einige Gegenstände, die besondere Eigenschaften aufweisen.Hier siehst du einige Beispiele dafür. Erkennst du die Besonderheiten?
Du siehst, dass alle Figuren in der Mitte geteilt werden können. Beide Teile haben dieselben Merkmale. Sie werden daher symmetrisch genannt. Wenn man die beiden Teile übereinander legt, überdecken sie sich, d.h sie sind dann deckungsgleich oder kongruent. Da diese Gegenstände aus der Natur kommen, sind sie natürlich nicht zu 100% kongruent. Die Gerade in der Mitte nennen wir Symmetrieachse.
- Eine Figur heißt achsensymmetrisch, falls man sie in zwei Teile zerlegen kann und diese sich exakt überdecken.
- Die beiden Hälften sind dann kongruent zueinander.
- Die Gerade durch die die Figur geteilt wird, heißt Symmetrieachse.
- Die Symmetrieachse kann dabei waagrecht, senkrecht oder diagonal durch die Figur verlaufen.
- Es kann auch mehr als eine Symmetriachse geben!
Zuordnung
Ordne die Bilder den richtigen Eigenschaften zu. Dazu musst du die Flaggen mit der linken Maustaste ziehen und fallen lassen, wenn der Hintergrund rot wird.
Übertrage anschließend je zwei Flaggen mit einer und zwei Symmetrieachsen in dein Heft und zeichne die Symmetriachsen ein!Konntest du alle Flaggen richtig zuordnen? Prima! Dann können wir ja zur nächsten Aufgabe gehen.
Ich denke, du weißt jetzt wieder, was der Begriff der Achsensymmetrie heißt und was achsensymmetrische Figuren sind!
Bevor wir mit einem neuen Thema anfangen, lernen wir noch eine 2.Definition für das Wort achsensymmetrisch kennen. Diese hängt mit der Achsenspiegelung zusammen, die wir in den beiden vorherigen Lernpfaden durchgenommen haben.
2.Station: Achsensymmetrische Vierecke
Finde die Wörter! (Waagrecht (von links nach rechts), senkrecht (von oben nach unten) und diagonal (von links unten nach rechts oben oder von oben links nach unten rechts), gefundene Wörter werden grün markiert)
Quadrat |
Rechteck |
Raute |
Trapez |
Drachen |
Hast du alle Vierecke gefunden? Falls du nicht auf alle gekommen bist, findest du hier die Lösung.
Es gibt also fünf Vierecke, die achsensymmetrisch sind: das Quadrat, das Rechteck, die Raute, der Drachen und das Trapez.
Achtung! Nicht alle Trapeze sind achsensymmetrisch. Nur das gleichschenklige Trapez gehört in diese Gruppe.
In dieser Aufgabe wollen wir herausfinden, wieviel Symmetrieachsen jedes der Vierecke hat.
Überprüfe, ob du alle Symmetrieachsen gefunden hast.
Es gibt fünf achsensymmetrische Vierecke: das Quadrat, das Rechteck, die Raute, den Drachen und das gleichschenklige Trapez.
Dabei besitzen Drachen und Trapez jeweils eine Symmetrieachse, das Rechteck und die Raute zwei und das Quadrat sogar vier.
Man kann die Vierecke durch die Lage ihrer Symmetrieachsen unterscheiden. Dabei gibt es zwei Fälle.
- 1. Fall: Die Symmetrieachse verläuft durch die gegenüberliegenden Eckpunkte des Vierecks (Drachen, Raute).
- 2. Fall: Die Symmetrieachse geht durch die Mittelpunkte gegenüberliegender, paralleler Seiten eines Vierecks (Rechteck, Trapez).
- Beim Quadrat trifft sowohl Fall 1, als auch Fall 2 zu.
Du kennst jetzt alle achsensymmetrsichen Vierecke und weißt, wieviele Symmetrieachsen sie haben. Kannst du auch folgende Fragen dazu richtig beantworten? Dabei können auch mehrere Antwortmöglichkeiten richtig sein.
Bei welchem Viereck stehen die Symmetrieachsen senkrecht aufeinander? (Raute) (!Trapez) (Rechteck)
Welche Vierecke haben mehr als eine Symmetrieachse?(!Drachen) (Quadrat) (Raute) (!Trapez) (Rechteck)
Die Raute hat ...? (je zwei Paar gleich großer Winkel) (!rechte Winkel) (!ein Paar gleich großer Winkel)
Welches Viereck hat vier gleich lange Seiten?(!Drachen) (Quadrat) (!Rechteck) (Raute)
Bei welchem Viereck verlaufen die Symmetrieachsen durch die Seitenmitten? (Rechteck) (!Raute) (Quadrat) (!Raute)
Hast du alle Fragen richtig beantwortet? Dann geht´s jetzt zur nächsten Station.
3.Station: Achsensymmetrische Dreiecke
Es gibt zwei achsensymmetrische Dreiecke. Mal sehen, ob du herausfindest, wie sie heißen.
Ziehe am Punkt C. Wann wird das Dreieck achsensymmetrisch? Wieviele Symmetrieachsen hat das Dreieck?
Versuche die Fragen richtig zu beantworten! Klicke dabei entweder auf Richtig oder Falsch!
Na kannst du dir denken, wie dieses Dreick heißt?
Hier der Merksatz:
- Ein achsensymmetrisches Dreieck besitzt zwei gleich lange Seiten. Sie werden Schenkel des Dreiecks genannt.
- Daher nennt man solch ein Dreieck gleichschenkliges Dreieck.
- Die dritte Seite des Dreiecks wird als Grundlinie oder Basis bezeichnet.
- Außerdem sind die beiden Winkel an der Basis gleich groß. Sie heißen daher Basiswinkel.
- Die Symmetrieachse des Dreiecks geht durch den Eckpunkt, welcher der Basis gegenüberliegt.
- Dieser Eckpunkt ist ein Fixpunkt.
- Das Dreieck wird durch die Symmetrieachse halbiert. Dabei wird je ein Schenkel auf den zweiten abgebildet und umgekehrt.
Alle achsensymmetrischen Vierecke können durch ihre Diagonalen in gleichschenklige Dreiecke zerlegt werden. Zeichne dir die Vierecke und die Teildreicke in dein Heft. Zähle dann wieviel Dreiecke du in jedem Viereck entdeckst!
Drachen
Den Drachen kann man in zwei gleichschenklige Dreiecke zerlegen. Denn der Drachen hat je zwei gleich lange Seiten.
Raute
Die Raute kann man in vier gleichschenklige Dreiecke zerlegen. Denn die Raute hat bekanntlich vier gleich lange Seiten. Außerdem sind diese Dreicke jeweils kongruent zueinander.
Trapez
Das Trapez kann insgesamt in vier Teildreiecke zerlegt werden, davon sind zwei gleichschenklig.
Rechteck
Das Rechteck besitzt insgesamt vier gleichschenklige Teildreiecke. Dabei sind je zwei Dreiecke kongruent zueinander.
Quadrat
Das Quadrat kann man sogar in insgesamt acht gleichschenklige Dreiecke zerlegen. Hier gibt es sogar Dreiecke die gleichschenklig und rechtwinklig sind. Des Weiteren sind alle Dreiecke kongruent.
Es gibt noch ein achsensymmetrisches Dreieck. Dabei handelt es sich um einen Spezialfall des gleichschenkligen Dreiecks.
Finde die unverdrehte Lösung zu den verdrehten Wörtern! Achte dabei auf Rechtschreibfehler.
Bei diesem Dreieck sind alle drei Seiten gleich lang. Es wird daher gleichseitiges Dreieck genannt.
Dabei können je zwei Seiten des Dreiecks die Schenkel sein. Im gleichseitigen Dreick gibt es daher drei Symmetrieachsen.
Außerdem sind alle drei Winkel gleich groß. Aus der Innenwinkelsumme im Dreieck folgt, dass die Winkel das Maß 60° besitzen.
Hier findest du den Merksatz:
- Ein Spezialfall des gleichschenkligen Dreiecks ist das gleichseitige Dreieck.
- Bei diesem Dreieck sind alle drei Seiten gleich lang.
- Es können je zwei Seiten des Dreiecks die Schenkel sein, daher hat dieses Dreieck drei Symmetrieachsen.
- Ein gleichseitiges Dreieck hat außerdem drei gleich große Winkel.
- Aufgrund der Innenwinkelsumme des Dreiecks ergibt sich für jeden Winkel das Maß 60°.
4.Station: Übungen
Hier gibts nochmal ein Memory. Es gehören immer drei Kärtchen zusammen. Folgende Kategorien sind zu finden:
- achsensymmetrische Verkehrsschilder
- nicht achsensymmetrische Verkehrsschilder
- achsensymmetrische Automarken
- nicht achsensymmetrische Automarken
- achsensymmetrische Gegenstände aus dem Alltag
Du kennst bereits achsensymmetrische Dreiecke und Vierecke und deren Symmetrieachsen. Aber wieviel Symmetrieachsen hat eigentlich ein Kreis?
Ein Kreis hat unendlich viele Symmetrieachsen. Hier siehst du einige davon eingezeichnet. Alle Symmetrieachsen verlaufen dabei durch den Mittelpunkt des Kreises. Das heißt alle Symmetrieachsen sind Zentralen des Kreises. Somit stellt jede Zentrale eine Spiegelachse des Kreises dar, an der er auf sich selbst abgebildet werden kann.