Nachricht für neue Nutzer.
Nachricht für engagierte Nutzer.

Benutzer:Ukalina/Funktionen/Quadratische Funktionen/QF08 Parabeln und Geraden

Aus ZUM-Unterrichten


Lernschritt Parabeln und Geraden

1. Aufgabe -Schnittpunkte von Parabel und Gerade
QF08 Abbildung 1 Arial24.pdf
Parabel und Gerade
QF05 Abbildung 1 Arial24.pdf
Parabel

In der Abbildung QF08 Abbildung 1 sind die Parabel (als durchgezogene Linie) und die Gerade (als gestrichelte Linie) dargestellt. Die Abbildung legt nahe, dass sich die beiden Graphen in den Punkten und schneiden.

  1. Bestimme die Schnittpunkte beider Graphen rechnerisch.
  2. Welcher Zusammenhang besteht zu der Parabel (QF05 Abbildung 1)?
Allgemeiner Ansatz zur Berechnung von Schnittpunkten zweier Funktionsgraphen: Die Funktionsterme gleichsetzen.

1.

|
| pq-Formel anwenden
und
Einsetzen der x-Werte in die Funktionsgleichung , um die y-Koordinaten der Schnittpunkte zu bestimmen (und in zur Kontrolle):

(nur zur Kontrolle)

(nur zur Kontrolle)
Schnittpunkte von und : und

2.
Die Berechnung der Schnittpunkte von und führt zu der gleichen quadratischen Gleichung, die auch bei der Berechnung der Nullstellen von zu lösen ist. Die Schnittstellen von und sind also die Nullstellen der Parabel .

2. Aufgabe -Schnittpunkt von Parabel und Tangente
QF08 Abbildung 2 Arial24.pdf
Parabel und Gerade
QF08 Abbildung 3 Arial24.pdf
Parabel

In der Abbildung QF08 Abbildung 2 sind die Parabel (als durchgezogene Linie) und die Gerade (als Strich-Punkt-Linie) dargestellt. Die Abbildung legt nahe, dass sich die beiden Graphen im Punkt berühren, die Gerade also eine Tangente der Parabel ist.

  1. Bestätige rechnerisch, dass es sich bei der Geraden tatsächlich um eine Tangente an die Parabel handelt, d.h. dass beide Graphen tatsächlich nur genau einen gemeinsamen Schnittpunkt (Berührpunkt) haben und dieser die Koordinaten besitzt.
  2. Welcher Zusammenhang besteht zu der Parabel (QF08 Abbildung 3)?
Allgemeiner Ansatz zur Berechnung von Schnittpunkten zweier Funktionsgraphen: Die Funktionsterme gleichsetzen.

1.

|
| 2. binomische Formel anwenden
| (doppelte) Nullstelle ablesen

Einsetzen des x-Wertes in die Funktionsgleichung , um die y-Koordinaten der Schnittpunkte zu bestimmen (und in zur Kontrolle):

(nur zur Kontrolle)
Berührpunkt von und :

2.
Der Ansatz zur Berechnung der Schnittpunkte von und führt zu der gleichen quadratischen Gleichung, die auch bei der Berechnung der Nullstellen von zu lösen ist. Die Berührstelle von und ist also die (einzige) Nullstelle der Parabel .