Nachricht für neue Nutzer.
Nachricht für engagierte Nutzer.
Benutzer:Ukalina/Funktionen/Quadratische Funktionen/QF04 Normalparabel strecken und spiegeln
Aus ZUM-Unterrichten
Lernschritt Normalparabel strecken und spiegeln
- In diesem Lernschritt wird untersucht, wie die Normalparabel im Koordinatensystem verändert wird, wenn man in ihrem Funktionsterm mit einem konstanten Faktor multipliziert. Beispielhaft werden dafür zunächst die Funktionen , und genauer betrachtet.
1. Aufgabe Wertetabelle
- Übertrage die Tabelle 2 für die Funktionen , und in dein Arbeitsheft und vervollständige sie.
- Vergleiche die Abfolge der y-Werte von links nach rechts bei allen drei Funktionen. Welchen Zusammenhang in Bezug auf die Parabel-Treppe stellst du fest?
| -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
| -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
| 25 | 16 | 9 | 4 | 1 | 0 | 1 | 4 | 9 | 16 | 25 | 36 | |
| 64 | 49 | 36 | 25 | 16 | 9 | 4 | 1 | 0 | 1 | 4 | 9 | |
| 9 | 4 | 1 | 0 | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 |
- Bei den Funktionsgraphen von und kann man die gleiche Parabel-Treppe anlegen wie bei der Normalparabel (siehe QF01 Normalparabel - Die Parabel-Treppe). Allerdings beginnt sie bei im tiefsten Punkt und bei im tiefsten Punkt .
