Einführung in die Differentialrechnung/Die h-Schreibweise
Für diesen Abschnitt haben Sie 90 Minuten Zeit.
Da sich dadurch einige Rechungen später einfacher gestalten lassen, betrachten wir in diesem Abschnitt noch eine andere Schreibweise für den Differenzenquotienten und den Differentialquotienten.
Die h-Schreibweise des Differenzenquotienten und des Differentialquotienten
Anstatt beim Übergang vom Differenzenquotienten zum Differentialquotienten x1 immer mehr x0 anzunähern, kann man auch die Differenz klein werden lassen. Es ist dann .
a) Überlegen Sie, wo in der folgenden Zeichnung die Größen , , , zu finden sind.
b) Geben Sie eine Formel für die Sekantensteigung für eine Funktion f an, wenn die Sekante durch den Punkt A(x0| f(x0)) und den Punkt B(x0+h| f(x0+h)) gehen soll.
c) Welches rechnerische Problem ergibt sich, wenn man in dieser Formel einfach h= 0 setzen würde.
Vollziehen Sie im Applet den Übergang von der Sekante zur Tangente nach. Wie ändert sich dabei h?
Sekantensteigung:
Wenn man h= 0 setzt, würde man durch 0 dividieren, was ja nicht erlaubt ist. Daher können wir zur Bestimmung der Tangensteigung nicht einfach h gleich 0 setzen, sondern können nur einen Grenzwert betrachten, indem wir h immer kleiner werden lassen und so der 0 annähern.
Gegeben ist wieder die Funktion f mit .
Berechnen Sie für ( und ) die Steigung der Sekanten für und . (Sie können hierzu die Tabellenfunktion Ihres Taschenrechners verwenden; schreiben Sie dazu mit n gleich 0, 1, 2, 3,...)
Bestimmen Sie einen Näherungswert für die Steigung der Tangenten an die Parabel im Punkt A(1|1). Vergleichen Sie mit den Ergebnissen aus den Aufgaben 9 und 10.
Die Sekantensteigung ist .
Dies muss für verschiedene n ausgerechnet werden. (Bei der Tabellenfunktion des Taschenrechners muss statt n als Variable x gewählt werden.)
n | h | x1 | Sekantensteigung m |
---|---|---|---|
0 | 1 | 2 | 3 |
1 | 0,1 | 1,1 | 2,1 |
2 | 0,01 | 1,01 | 2,01 |
3 | 0,001 | 1,001 | 2,001 |
4 | 0,0001 | 1,0001 | 2,0001 |
5 | 0,00001 | 1,00001 | 2,00001 |
Ersetzen Sie in der Definition des Differentialquotienten den Wert x1 durch x0+h.
Dies nennt man die h-Schreibweise des Differentialquotienten.
Die Berechnung von Ableitungen
Mit Hilfe dieser h-Schreibweise des Differentialquotienten kann man die Ableitung f'(x0) einer Funktion f an einer Stelle x0 berechnen.
Betrachtet wird die Funktion (die in der Einstiegsaufgabe die Höhes des Kraters beschreibt).
- Die Ableitung an der Stelle x=100 wird wie folgt berechnet:
- Ganz analog lässt sich die Ableitung auch für eine beliebige Stelle x=x0 bestimmen:
Bestimmen Sie mit Hilfe des Applets, wie weit das Fahrzeug im Barringer-Krater kommt.
- Variieren Sie die Stelle x0 im Applet und beschreiben Sie die Bedeutung der sich ergebenden Ortslinie.
- Treffen Sie sich mit einem weiteren Lernteam und vergleichen Sie Ihre Lösungen.
Die Berechnung des Grenzwertes des Differenzenquotienten für eine bestimmte Stelle x0 ergibt die Ableitung an dieser Stelle. Wird diese Berechnung für eine allgemeine Stelle x durchgeführt, so erhält man die Funktion f´(x), die jeder Stelle x die Ableitung an der Stelle zuordnet – die sogenannte Ableitungsfunktion.
Hausaufgabe:
Berechnen Sie die Ableitung der Funktion f mit f(x)=3x2+1 an der Stelle x=2 und an der Stelle x0.
Üben und Vertiefen
Bearbeiten Sie zwei der drei Aufgaben. Die Anzahl der * gibt den Schwierigkeitsgrad der Aufgaben an.
- Seite 133/4b (Bigalke-Köhler, Mathematik 1, Hessen, Cornelsen-Verlag 2009, ISBN 978-3-464-57449-2) bzw.
- Seite 51/4b (Bigalke-Köhler, Mathematik Band 1, Analysis, Cornelsen-Verlag 2007, ISBN 978-3-06-000478-2) bzw.
- Seite 48/3b (Lambacher-Schweizer, Mathematik Leistungskurs, Klett-Verlag 2011, ISBN 978-3-12-735601-4)
- Seite 133/4c (Bigalke-Köhler, Mathematik 1, Hessen, Cornelsen-Verlag 2009, ISBN 978-3-464-57449-2) bzw.
- Seite 51/4c (Bigalke-Köhler, Mathematik Band 1, Analysis, Cornelsen-Verlag 2007, ISBN 978-3-06-000478-2) bzw.
- Seite 52/4 (Lambacher-Schweizer, Mathematik Leistungskurs, Klett-Verlag 2011, ISBN 978-3-12-735601-4)
- Seite 133/5a (Bigalke-Köhler, Mathematik 1, Hessen, Cornelsen-Verlag 2009, ISBN 978-3-464-57449-2) bzw.
- Seite 51/5a (Bigalke-Köhler, Mathematik Band 1, Analysis, Cornelsen-Verlag 2007, ISBN 978-3-06-000478-2) bzw.
- Seite 48/10 (Lambacher-Schweizer, Mathematik Leistungskurs, Klett-Verlag 2011, ISBN 978-3-12-735601-4)
Testen
Sie sollten nach dem Test sagen können:
Ich kann die Ableitungsfunktionen für quadratische Funktionen und kubische Funktionen mit Hilfe des Grenzprozesses des Übergangs vom Differenzenquotienten zum Differentialquotienten berechnen.
Aus technischen Gründen werden in den Aufgaben an manchen Stellen eckige Klammern verwendet statt der sonst in diesem Zusammenhang üblichen runden Klammern.
1) Ordnen Sie die Formeln richtig den Oberbegriffen zu.
Differenz der x-Werte | h | ||
Differenz der Funktionswerte |
2a) Welchen Wert hat h für die Funktion f(x)=x² im Intervall zwischen x0=1 und x1=1,1? (!1) (0,1) (!2) (!1,1) (!3) (!0,01) (!2,1)
2b) Welchen Wert hat für die Funktion f(x)=x² im Intervall für x0=2 und h=0,1? (!2) (!4) (!1) (!0,01) (4,41) (!4,1) (!2,1) (!0,1) (!4,01)
2c) Was gibt h in der Formel an? (!Um wie viele Einheiten sich der Funktionswert zwischen den Stellen x0 und x0+h verändert.)(!Die Differenz der Funktionswerte.) (Die Differenz der x-Werte.) (!Die Steigung.)
2d) Wir betrachten die Funktion f[x]=0,2x³+x. Mit welcher Berechnung kann die Tangentensteigung an der Stelle x=2 am besten angenähert werden? () (!) (!)(!) (!)(!)
Wenn Ihre Lösungsrate mindestens 75% beträgt, gehen Sie zu den weiteren Aufgaben. Wenn Sie weniger als 75% richtig haben, überprüfen Sie genau Ihre Fehler und versuchen Sie zu verstehen, was Sie falsch gemacht haben.