Signifikanztest für binomialverteilte Zufallsgrößen/Wiederholung Binomialverteilung
Hier wiederholst du nochmal die wichtigsten Grundlagen der Binomialverteilung.
In der ersten Übung wiederholst du die grundlegenden Begriffe der Binomialverteilung.
Fülle den Lückentext aus!
Ein Zufallsexperiment mit genau zwei Ergebnissen (Treffer und Niete) nennt man . Wird solch ein Experiment n-mal wiederholt, und sind die Versuche unabhängig voneinander, erhält man eine der Länge n. Ist p die Trefferwahrscheinlichkeit und X die Zufallsvariable, welche die Anzahl k der Treffer angibt, dann kann die Wahrscheinlichkeit für k Treffer durch die () berechnet werden. Die Wahrscheinlichkeitsverteilung für X heißt mit den Parametern n und p. Der der Binomialverteilung wird durch berechnet. Stellt man die Binomialverteilung in einer Grafik dar (p-k Diagramm) erhält man eine . Der Hochpunkt der Funktion liegt beim Erwartungswert. Neben der Binomialverteilung benötigt man auch häufig die zugehörige , für deren Wahrscheinlichkeit die Schreibweise üblich ist. Bei der Verteilungsfunktion werden die Wahrscheinlichkeiten bis zu einem bestimmen k Wert aufsummiert: .
ErwartungswertFormel von BernoulliBinomialverteilungBernoulli-KetteGlockenkurveVerteilungsfunktionBernoulli-Experiment
Vor allem die grafische Anschauung der Binomialverteilung und der Umgang mit der Verteilungsfunktion sind wichtig für die Durchführung eines Signifikanztests. Prüfe und wiederhole dein Können dazu in Übung 2.
Die Schüler*innen der Umweltgruppe befragen 1000 Menschen in Deutschland, ob sie den Klimawandel als Bedrohung ansehen. Für die folgenden Aufgaben wird angenommen, dass immer noch 71% der Menschen in Deutschland sich durch den Klimawandel bedroht fühlen.
a) Skizziere die Binomialverteilung für die Befragung.
In dieser Aufgabe errechnet sich der Erwartungswert also wie folgt: .
Hinweis! Die Breite der Glockenkurve kannst du in deiner Skizze nach Gefühl eintragen.
Bereche die Wahrscheinlichkeit dafür,...
b) dass in der Stichprobe genau 710 Menschen den Klimawandel als Bedrohung ansehen.
Nutze die Formel von Bernoulli!
Zur Berechnung nutze deinen Taschenrechner! (Hinweis: Bei den meisten Taschenrechner ist es die Funktion binompdf(n,p,k))
c) dass höchstens 680 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen.
Höchtes heißt, es können 0,1,2,3, ...,680 der Befragten den Klimawandel als Bedrohung ansehen.
In der Skizze ist die gesuchte Wahrscheinlichkeit rot markiert.
Zur Berechnung nutze deinen Taschenrechner! (Hinweis: Bei den meisten Taschenrechner ist es die Funktion binomcdf(n,p,k))
d) dass mindestens 740 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen.
Mindestens heißt, es können 740, 741, ...,1000 der Befragten den Klimawandel als Bedrohung ansehen.
In der Skizze ist die gesuchte Wahrscheinlichkeit rot markiert.
P(mindestens k)= 1 - P(höchstens k - 1)
Die Wahrscheinlichkeit für höchstens kannst du wieder mit dem Taschenrechner berechnen.
Super gemacht! Dann geht es jetzt weiter mit dem Signifikanztest!