Achsensymmetrische Vierecke und Dreiecke: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
K (Kilian Schoeller verschob die Seite Achsenspiegelung/Achsensymmetrische Vierecke und Dreiecke nach Achsensymmetrische Vierecke und Dreiecke, ohne dabei eine Weiterleitung anzulegen)
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
__NOTOC__
__NOTOC__
{{Lernpfad| Titel=Achsensymmetrische Vierecke und Dreiecke
{{Box|1=Achsensymmetrische Vierecke und Dreiecke|2=
|In diesem Lernpfad wollen wir achsensymmetrische Vierecke und Dreicke kennenlernen. Dazu wollen wir als erstes nochmal wiederholen, was sich hinter dem Begriff der Achsensymmtrie verbirgt.
[[Bild:Blatt.jpg|250px|right]]
In diesem Lernpfad wollen wir achsensymmetrische Vierecke und Dreicke kennenlernen. Dazu wollen wir als erstes nochmal wiederholen, was sich hinter dem Begriff der Achsensymmtrie verbirgt.


'''Notiere alle Merksätze und Definitionen in dein Heft!'''
'''Notiere alle Merksätze und Definitionen in dein Heft!'''
Zeile 8: Zeile 9:
;Material: dein Heft, Stifte und ein Lineal!
;Material: dein Heft, Stifte und ein Lineal!


[[Datei:Logo Mathematik-digital 2011.png|200px|verweis=Mathematik-digital|Mathematik-digital]]
[[Datei:Logo Mathematik-digital 2011.png|200px|right|verweis=Mathematik-digital|Mathematik-digital]]
|Bild=[[Bild:Blatt.jpg|250px]]
|3=Lernpfad}}
}}
 
{{Navigation verstecken|{{Vorlage:Achsenspiegelung}}}}


[[Bild:Spiegel1.jpg|400px|center]]
[[Bild:Spiegel1.jpg|400px|center]]
Zeile 18: Zeile 20:
Nein? Dann wollen wir uns diese Begriffe zusammen erarbeiten. Vielleicht fällt dir ja dann wieder ein, was es damit auf sich hat.
Nein? Dann wollen wir uns diese Begriffe zusammen erarbeiten. Vielleicht fällt dir ja dann wieder ein, was es damit auf sich hat.
Also los geht´s!
Also los geht´s!
{{Aufgaben|1|2=


{{Box|1=Symmetrieachse|2=
In unserem alltäglichen Leben gibt es einige Gegenstände, die besondere Eigenschaften aufweisen.Hier siehst du einige Beispiele dafür. Erkennst du die Besonderheiten?
In unserem alltäglichen Leben gibt es einige Gegenstände, die besondere Eigenschaften aufweisen.Hier siehst du einige Beispiele dafür. Erkennst du die Besonderheiten?


[[Bild:Schmetterling1.jpg|300px]] [[Bild:Blatt.jpg|250px]] [[Bild:Residenz.jpg|290px]] [[Bild:Verkehrszeichen.jpg|200px]]
[[Bild:Schmetterling1.jpg|300px]] [[Bild:Blatt.jpg|250px]] [[Bild:Residenz.jpg|290px]] [[Bild:Verkehrszeichen.jpg|200px]]
Hier findest du die Lösung! {{Lösung versteckt|


{{Lösung versteckt|
Du siehst, dass alle Figuren in der Mitte geteilt werden können. Beide Teile haben dieselben Merkmale. Sie werden daher '''symmetrisch''' genannt. Wenn man die beiden Teile übereinander legt, überdecken sie sich, d.h sie sind dann '''deckungsgleich''' oder '''kongruent'''. Da diese Gegenstände aus der Natur kommen, sind sie natürlich nicht zu 100% kongruent. Die Gerade in der Mitte nennen wir '''Symmetrieachse'''.
Du siehst, dass alle Figuren in der Mitte geteilt werden können. Beide Teile haben dieselben Merkmale. Sie werden daher '''symmetrisch''' genannt. Wenn man die beiden Teile übereinander legt, überdecken sie sich, d.h sie sind dann '''deckungsgleich''' oder '''kongruent'''. Da diese Gegenstände aus der Natur kommen, sind sie natürlich nicht zu 100% kongruent. Die Gerade in der Mitte nennen wir '''Symmetrieachse'''.


Zeile 31: Zeile 34:


Fallen dir noch mehr Gegenstände aus dem Alltag ein, die symmetrisch sind? Schreibe sie in deinem Heft auf!
Fallen dir noch mehr Gegenstände aus dem Alltag ein, die symmetrisch sind? Schreibe sie in deinem Heft auf!
}}
|3=Arbeitsmethode}}
 
{{Box|1=Was heißt achsensymmetrisch und kongruent?|2=
[[Bild:Spiegel2.jpg|200px|right]]


{{Merke|Titel = Was heißt achsensymmetrisch und kongruent?|
* Eine Figur heißt '''achsensymmetrisch''', falls man sie in zwei Teile zerlegen kann und diese sich exakt überdecken.  
* Eine Figur heißt '''achsensymmetrisch''', falls man sie in zwei Teile zerlegen kann und diese sich exakt überdecken. [[Bild:Spiegel2.jpg|300px|right]]
* Die beiden Hälften sind dann '''kongruent''' zueinander.
* Die beiden Hälften sind dann '''kongruent''' zueinander.
* Die Gerade durch die die Figur geteilt wird, heißt '''Symmetrieachse'''.
* Die Gerade durch die die Figur geteilt wird, heißt '''Symmetrieachse'''.
* Die Symmetrieachse kann dabei waagrecht, senkrecht oder diagonal durch die Figur verlaufen.
* Die Symmetrieachse kann dabei waagrecht, senkrecht oder diagonal durch die Figur verlaufen.
* Es kann auch mehr als eine Symmetriachse geben!
* Es kann auch mehr als eine Symmetriachse geben!
}}
|3=Merke}}


{{Aufgaben|1=2|2=
{{Box|1=Ordne zu!|2=
<div class="zuordnungs-quiz">
<big>'''Zuordnung'''</big>
<big>'''Zuordnung'''</big>


Ordne die Bilder den richtigen Eigenschaften zu. Dazu musst du die Flaggen mit der linken Maustaste ziehen und fallen lassen, wenn der Hintergrund rot wird.
Ordne die Bilder den richtigen Eigenschaften zu. Dazu musst du die Flaggen mit der linken Maustaste ziehen und fallen lassen, wenn der Hintergrund rot wird.


Übertrage anschließend je zwei Flaggen mit einer und zwei Symmetrieachsen in dein Heft und zeichne die Symmetriachsen ein!


Übertrage anschließend je zwei Flaggen mit einer und zwei Symmetrieachsen in dein Heft und zeichne die Symmetriachsen ein!
|3=Arbeitsmethode}}
 
<div class="zuordnungs-quiz">
{|  
{|  
| keine Symmetrieachse|| [[Bild:Griechenland.gif|70px]] || [[Bild:USA.gif|70px]]  || [[Bild:Tschecien.gif|70px]] ||  
| keine Symmetrieachse|| [[Bild:Griechenland.gif|70px]] || [[Bild:USA.gif|70px]]  || [[Bild:Tschecien.gif|70px]] ||  
Zeile 59: Zeile 66:
|}
|}
</div>
</div>


Konntest du alle Flaggen richtig zuordnen? Prima! Dann können wir ja zur nächsten Aufgabe gehen.
Konntest du alle Flaggen richtig zuordnen? Prima! Dann können wir ja zur nächsten Aufgabe gehen.
}}
{{Aufgaben|3|


{{Box|1=Zeichne achsensymmetrische Figuren|2=


Übertrage die drei Figuren in dein Heft und erweitere sie zu einer achsensymmetrischen Figur!
Übertrage die drei Figuren in dein Heft und erweitere sie zu einer achsensymmetrischen Figur!


[[Bild:Haus.png|300px]] [[Bild:Stern.png|300px]] [[Bild:Figur.png|300px]]
[[Bild:Hausvervollst.png|300px]] [[Bild:Stern vervollst.png|300px]] [[Bild:Figur.png|300px]]


Hier findest du die Lösung!  {{Lösung versteckt|
Hier findest du die Lösung!   


[[Bild:Haus1.png|300px]] [[Bild:Stern1.png|300px]]  [[Bild:Figur1.png|300px]]  
{{Lösung versteckt|
}}
[[Bild:Haus3.png|300px]] [[Bild:Stern1.png|300px]]  [[Bild:Figur1.png|300px]]  
}}
}}
|3=Arbeitsmethode}}
'''Ich denke, du weißt jetzt wieder, was der Begriff der Achsensymmetrie heißt und was achsensymmetrische Figuren sind!'''
'''Ich denke, du weißt jetzt wieder, was der Begriff der Achsensymmetrie heißt und was achsensymmetrische Figuren sind!'''
[[Bild:Spiegel3.jpg|400px|center]]
[[Bild:Spiegel3.jpg|400px|center]]


Bevor wir mit einem neuen Thema anfangen, lernen wir noch eine 2.Definition für das Wort achsensymmetrisch kennen. Diese hängt mit der Achsenspiegelung zusammen, die wir in den beiden vorherigen Lernpfaden durchgenommen haben.
Bevor wir mit einem neuen Thema anfangen, lernen wir noch eine 2.Definition für das Wort achsensymmetrisch kennen. Diese hängt mit der Achsenspiegelung zusammen, die wir in den beiden vorherigen Lernpfaden durchgenommen haben.
{{Merke|Titel=Definition|


{{Box|1=Definition Achsensymmetrische Figur|2=
Eine Figur, die man durch eine Achsenspiegelung auf sich selbst abbilden kann, heißt '''achsensymmetrisch'''.
Eine Figur, die man durch eine Achsenspiegelung auf sich selbst abbilden kann, heißt '''achsensymmetrisch'''.
}}
|3=Merksatz}}


=2.Station: Achsensymmetrische Vierecke=
=2.Station: Achsensymmetrische Vierecke=
{{Aufgaben|4|


{{Box|1=Finde achsensymmetrische Vierecke|2=
In dieser Aufgabe musst du herausfinden, welche Vierecke achsensymmetrisch sind. Es befinden sich fünf Vierecke im Such-Rätsel. Wenn du dich an Aufgabe 2 erinnerst, fallen dir vielleicht schon zwei Vierecke ein, die du bereits kennst. Viel Spaß beim Suchen!
In dieser Aufgabe musst du herausfinden, welche Vierecke achsensymmetrisch sind. Es befinden sich fünf Vierecke im Such-Rätsel. Wenn du dich an Aufgabe 2 erinnerst, fallen dir vielleicht schon zwei Vierecke ein, die du bereits kennst. Viel Spaß beim Suchen!


|3=Arbeitsmethode}}


<div class="suchsel-quiz"><br>
<div class="suchsel-quiz"><br>
Zeile 108: Zeile 114:
|}
|}
</div>
</div>
Hast du alle Vierecke gefunden? Falls du nicht auf alle gekommen bist, findest du hier die Lösung.
Hast du alle Vierecke gefunden? Falls du nicht auf alle gekommen bist, findest du hier die Lösung.
{{Lösung versteckt|
{{Lösung versteckt|
Zeile 117: Zeile 121:
<br>'''Achtung!''' Nicht alle Trapeze sind achsensymmetrisch. Nur das gleichschenklige Trapez gehört in diese Gruppe.
<br>'''Achtung!''' Nicht alle Trapeze sind achsensymmetrisch. Nur das gleichschenklige Trapez gehört in diese Gruppe.
}}
}}
}}
 
<br>
{{Box|1=Wieviele Symmetrieachsen?|2=
<div style="border: 2px solid #00c5cd; background-color:#ffffff; padding:7px;">
'''5. Aufgabe'''
<br>
In dieser Aufgabe wollen wir herausfinden, wieviel Symmetrieachsen jedes der Vierecke hat.
In dieser Aufgabe wollen wir herausfinden, wieviel Symmetrieachsen jedes der Vierecke hat.
<br>
<br>
Ordne den Vierecken ihren Namen und das Bild ihrer Symmetrieachsen  zu. Dazu musst du die Bilder mit der linken Maustaste ziehen und fallenlassen, wenn der Hintergrund rot wird. Viel Spaß!
Ordne den Vierecken ihren Namen und das Bild ihrer Symmetrieachsen  zu. Dazu musst du die Bilder mit der linken Maustaste ziehen und fallenlassen, wenn der Hintergrund rot wird. Viel Spaß!
<br>
 
|3=Arbeitsmethode}}
<div class="zuordnungs-quiz">
<div class="zuordnungs-quiz">
<big>'''Zuordnung'''</big><br>
<big>'''Zuordnung'''</big><br>
Zeile 144: Zeile 146:
<br>
<br>
Überprüfe, ob du alle Symmetrieachsen gefunden hast.
Überprüfe, ob du alle Symmetrieachsen gefunden hast.
{{versteckt|
{{Lösung versteckt|
 
Hier siehst du nochmal alle Symmetrieachsen eingezeichnet.
Hier siehst du nochmal alle Symmetrieachsen eingezeichnet.
[[Bild:Vierecke1.png|600px|center]]
[[Bild:Vierecke1.png|center]]
}}
}}
</div>
 
<br>
{{Box|1='''Achsensymmetrische Vierecke:'''|2=
<div style="border: 2px solid yellow; background-color:#ffffff; padding:7px;">
[[Bild:Spiegel2.jpg|200px|right]]
{{Merke|'''Achsensymmetrische Vierecke:''' <br>
Es gibt fünf achsensymmetrische Vierecke: das '''Quadrat''', das '''Rechteck''', die '''Raute''', den '''Drachen''' und das '''gleichschenklige Trapez'''.
Es gibt fünf achsensymmetrische Vierecke: das '''Quadrat''', das '''Rechteck''', die '''Raute''', den '''Drachen''' und das '''gleichschenklige Trapez'''.
<br>
<br>
Dabei besitzen Drachen und Trapez jeweils eine Symmetrieachse, das Rechteck und die Raute zwei und das Quadrat sogar vier.
Dabei besitzen Drachen und Trapez jeweils eine Symmetrieachse, das Rechteck und die Raute zwei und das Quadrat sogar vier.
<br>
<br>
Man kann die Vierecke durch die Lage ihrer Symmetrieachsen unterscheiden. Dabei gibt es zwei Fälle. [[Bild:Spiegel2.jpg|300px|right]]
Man kann die Vierecke durch die Lage ihrer Symmetrieachsen unterscheiden. Dabei gibt es zwei Fälle.  
*'''1. Fall''': Die Symmetrieachse verläuft durch die gegenüberliegenden Eckpunkte des Vierecks (Drachen, Raute).
*'''1. Fall''': Die Symmetrieachse verläuft durch die gegenüberliegenden Eckpunkte des Vierecks (Drachen, Raute).
*'''2. Fall''': Die Symmetrieachse geht durch die Mittelpunkte gegenüberliegender, paralleler Seiten eines Vierecks (Rechteck, Trapez).
*'''2. Fall''': Die Symmetrieachse geht durch die Mittelpunkte gegenüberliegender, paralleler Seiten eines Vierecks (Rechteck, Trapez).
*Beim Quadrat trifft sowohl Fall 1, als auch Fall 2 zu.
*Beim Quadrat trifft sowohl Fall 1, als auch Fall 2 zu.
<br>}}
|3=Merksatz}}
</div>
 
<br>
 
<div style="border: 2px solid #00c5cd; background-color:#ffffff; padding:7px;">
{{Box|1=Test|2=
'''6. Aufgabe'''
<br>
Du kennst jetzt alle achsensymmetrsichen Vierecke und weißt, wieviele Symmetrieachsen sie haben. Kannst du auch folgende Fragen dazu richtig beantworten? Dabei können auch mehrere Antwortmöglichkeiten richtig sein.
Du kennst jetzt alle achsensymmetrsichen Vierecke und weißt, wieviele Symmetrieachsen sie haben. Kannst du auch folgende Fragen dazu richtig beantworten? Dabei können auch mehrere Antwortmöglichkeiten richtig sein.
<div class="multiplechoice-quiz">
<div class="multiplechoice-quiz">
Zeile 180: Zeile 178:
Bei welchem Viereck verlaufen die Symmetrieachsen durch die Seitenmitten? (Rechteck) (!Raute) (Quadrat) (!Raute)
Bei welchem Viereck verlaufen die Symmetrieachsen durch die Seitenmitten? (Rechteck) (!Raute) (Quadrat) (!Raute)
</div>
</div>
<br>
|3=Arbeitsmethode}}
 
Hast du alle Fragen richtig beantwortet? Dann geht´s jetzt zur nächsten Station.
Hast du alle Fragen richtig beantwortet? Dann geht´s jetzt zur nächsten Station.
</div>
<br>
<br>
[[Bild:Spiegel4.jpg|300px|center]]
[[Bild:Spiegel4.jpg|300px|center]]
<br>
<br>
=3.Station: Achsensymmetrische Dreiecke=
=3.Station: Achsensymmetrische Dreiecke=
'''Es gibt zwei achsensymmetrische Dreiecke. Mal sehen, ob du herausfindest, wie sie heißen.'''
'''Es gibt zwei achsensymmetrische Dreiecke. Mal sehen, ob du herausfindest, wie sie heißen.'''
<br>
 
<div style="border: 2px solid #00c5cd; background-color:#ffffff; padding:7px;">
{{Box|1=Erzeuge ein achsensymmetrische Dreieck|2=
'''7. Aufgabe'''
<br>
Ziehe am Punkt C. Wann wird das Dreieck achsensymmetrisch? Wieviele Symmetrieachsen hat das Dreieck?
Ziehe am Punkt C. Wann wird das Dreieck achsensymmetrisch? Wieviele Symmetrieachsen hat das Dreieck?
<ggb_applet height="500" width="900" showResetIcon="true" filename="Gleichschenklig.ggb" />  
 
<br>
<ggb_applet height="500" width="900" showResetIcon="true" id="upx7awy8" />  
|3=Arbeitsmethode}}
 
Versuche die Fragen richtig zu beantworten! Klicke dabei entweder auf Richtig oder Falsch!
Versuche die Fragen richtig zu beantworten! Klicke dabei entweder auf Richtig oder Falsch!


Zeile 223: Zeile 222:
|| Das Dreieck hat nur eine Symmetrieachse. Nämlich die durch den Eckpunkt C.
|| Das Dreieck hat nur eine Symmetrieachse. Nämlich die durch den Eckpunkt C.


</quiz>


</quiz>
<br>
Na kannst du dir denken, wie dieses Dreick heißt?
Na kannst du dir denken, wie dieses Dreick heißt?
</div>
<br>
<span style="background:yellow">Hier findest du den Merksatz!</span>  {{Versteckt|


{{Merke|'''Gleichschenkliges Dreieck:''' <br>
Hier der Merksatz:
 
{{Box|1='''Gleichschenkliges Dreieck:'''|2=
* Ein achsensymmetrisches Dreieck besitzt zwei gleich lange Seiten. Sie werden '''Schenkel''' des Dreiecks genannt.[[Bild:Gleichschenklig.png|400px|right]]
* Ein achsensymmetrisches Dreieck besitzt zwei gleich lange Seiten. Sie werden '''Schenkel''' des Dreiecks genannt.[[Bild:Gleichschenklig.png|400px|right]]
* Daher nennt man solch ein Dreieck '''gleichschenkliges Dreieck'''.
* Daher nennt man solch ein Dreieck '''gleichschenkliges Dreieck'''.
Zeile 239: Zeile 236:
* Dieser Eckpunkt ist ein Fixpunkt.
* Dieser Eckpunkt ist ein Fixpunkt.
* Das Dreieck wird durch die Symmetrieachse halbiert. Dabei wird je ein Schenkel auf den zweiten abgebildet und umgekehrt.
* Das Dreieck wird durch die Symmetrieachse halbiert. Dabei wird je ein Schenkel auf den zweiten abgebildet und umgekehrt.
<br>}}
|3=Merksatz}}
}}
 
<br>
 
<div style="border: 2px solid #00c5cd; background-color:#ffffff; padding:7px;">
{{Box|1=Vierecke in Dreiecke zerlegen|2=
'''8. Aufgabe'''
<br>
Alle achsensymmetrischen Vierecke können durch ihre Diagonalen in gleichschenklige Dreiecke zerlegt werden. Zeichne dir die Vierecke und die Teildreicke in dein Heft. Zähle dann wieviel Dreiecke du in jedem Viereck entdeckst!
Alle achsensymmetrischen Vierecke können durch ihre Diagonalen in gleichschenklige Dreiecke zerlegt werden. Zeichne dir die Vierecke und die Teildreicke in dein Heft. Zähle dann wieviel Dreiecke du in jedem Viereck entdeckst!
<br>
 
Hier findest du die Lösung! {{Versteckt|
{{Lösung versteckt|


'''Drachen'''<br>
'''Drachen'''<br>
Zeile 264: Zeile 259:
[[Bild:QuadratD.png|600px]] <br>Das Quadrat kann man sogar in insgesamt acht gleichschenklige Dreiecke zerlegen. Hier gibt es sogar Dreiecke die gleichschenklig und rechtwinklig sind. Des Weiteren sind alle Dreiecke kongruent.
[[Bild:QuadratD.png|600px]] <br>Das Quadrat kann man sogar in insgesamt acht gleichschenklige Dreiecke zerlegen. Hier gibt es sogar Dreiecke die gleichschenklig und rechtwinklig sind. Des Weiteren sind alle Dreiecke kongruent.
}}
}}
</div>
|3=Arbeitsmethode}}
<br>
 
<div style="border: 2px solid #00c5cd; background-color:#ffffff; padding:7px;">
{{Box|1=Gleichseitiges Dreieck|2=
'''9. Aufgabe'''
<br>
Es gibt noch ein achsensymmetrisches Dreieck. Dabei handelt es sich um einen Spezialfall des gleichschenkligen Dreiecks.
Es gibt noch ein achsensymmetrisches Dreieck. Dabei handelt es sich um einen Spezialfall des gleichschenkligen Dreiecks.
<br>
<br>
Zeile 286: Zeile 279:
</div>
</div>
Konntest du zu allen Wörtern die richtige Lösug finden? Dann weißt du ja jetzt, wie das Dreieck heißt. Super!
Konntest du zu allen Wörtern die richtige Lösug finden? Dann weißt du ja jetzt, wie das Dreieck heißt. Super!
</div>
|3=Arbeitsmethode}}
<br>
 
<span style="background:yellow">Hier findest du den Merksatz!</span>  {{Versteckt|
Hier findest du den Merksatz:


{{Merke|'''Gleichseitiges Dreieck:''' <br>
{{Box|1='''Gleichseitiges Dreieck:'''|2=
* Ein Spezialfall des gleichschenkligen Dreiecks ist das '''gleichseitige Dreieck'''. [[Bild:Gleichseitig1.png|300px|right]]
* Ein Spezialfall des gleichschenkligen Dreiecks ist das '''gleichseitige Dreieck'''. [[Bild:Gleichseitig1.png|300px|right]]
* Bei diesem Dreieck sind alle drei Seiten gleich lang.
* Bei diesem Dreieck sind alle drei Seiten gleich lang.
Zeile 296: Zeile 289:
* Ein gleichseitiges Dreieck hat außerdem drei gleich große Winkel.
* Ein gleichseitiges Dreieck hat außerdem drei gleich große Winkel.
* Aufgrund der Innenwinkelsumme des Dreiecks ergibt sich für jeden Winkel das Maß 60°.
* Aufgrund der Innenwinkelsumme des Dreiecks ergibt sich für jeden Winkel das Maß 60°.
<br>}}
|3=Merksatz}}
}}
 
<br>
 
=4.Station: Übungen=
=4.Station: Übungen=
<div style="border: 2px solid #00c5cd; background-color:#ffffff; padding:7px;">
 
'''Übung 1'''
{{Box|1=Memory|2=
<br>
Hier gibts nochmal ein Memory. Es gehören immer drei Kärtchen zusammen.
Hier gibts nochmal ein Memory. Es gehören immer drei Kärtchen zusammen.
Folgende Kategorien sind zu finden:
Folgende Kategorien sind zu finden:
Zeile 310: Zeile 302:
* nicht achsensymmetrische Automarken
* nicht achsensymmetrische Automarken
* achsensymmetrische Gegenstände aus dem Alltag  
* achsensymmetrische Gegenstände aus dem Alltag  
|3=Üben}}
<div class="memo-quiz">
<div class="memo-quiz">
{|  
{|  
Zeile 324: Zeile 318:
|}
|}
</div>
</div>
Drei zusammengehörige Teile zu finden, ist ganz schön schwer, oder?
 
</div>
 
<br>
{{Box|1=Kreuze an!|2=
<div style="border: 2px solid #00c5cd; background-color:#ffffff; padding:7px;">
'''Übung 2'''
<br>
<quiz display="simple">
<quiz display="simple">
{''' Kreuze die richtige Antwort an. Es können auch mehrere Kästchen richtig sein.'''  
{''' Kreuze die richtige Antwort an. Es können auch mehrere Kästchen richtig sein.'''  
Zeile 343: Zeile 334:


</quiz>
</quiz>
</div>
|3=Üben}}
<br>
 
<div style="border: 2px solid #00c5cd; background-color:#ffffff; padding:7px;">
{{Box|1=Zusatzaufgabe|2=
'''Zusatzaufgabe'''
<br>
Du kennst bereits achsensymmetrische Dreiecke und Vierecke und deren Symmetrieachsen. Aber wieviel Symmetrieachsen hat eigentlich ein Kreis?
Du kennst bereits achsensymmetrische Dreiecke und Vierecke und deren Symmetrieachsen. Aber wieviel Symmetrieachsen hat eigentlich ein Kreis?
[[Bild:KreisS1.png|200px|center]]
[[Bild:KreisS1.png|200px|center]]
Hier findest du die Lösung! {{Versteckt|
 
{{Lösung versteckt|


[[Bild:KreisS.png|200px|center]]
[[Bild:KreisS.png|200px|center]]
Ein Kreis hat unendlich viele Symmetrieachsen. Hier siehst du einige davon eingezeichnet. Alle Symmetrieachsen verlaufen dabei durch den Mittelpunkt des Kreises. Das heißt alle Symmetrieachsen sind Zentralen des Kreises. Somit stellt jede Zentrale eine Spiegelachse des Kreises dar, an der er auf sich selbst abgebildet werden kann.  
Ein Kreis hat unendlich viele Symmetrieachsen. Hier siehst du einige davon eingezeichnet. Alle Symmetrieachsen verlaufen dabei durch den Mittelpunkt des Kreises. Das heißt alle Symmetrieachsen sind Zentralen des Kreises. Somit stellt jede Zentrale eine Spiegelachse des Kreises dar, an der er auf sich selbst abgebildet werden kann.  
}}
}}
</div>
|3=Üben}}
<br>
<br>
[[Bild:Spiegel9.jpg|400px|center]]
[[Bild:Spiegel9.jpg|400px|center]]
Zeile 362: Zeile 352:
{{Fortsetzung
{{Fortsetzung
|vorher=Eigenschaften der Achsenspiegelung
|vorher=Eigenschaften der Achsenspiegelung
|vorherlink=../Eigenschaften der Achsenspiegelung
|vorherlink=Eigenschaften der Achsenspiegelung
|übersicht=zur Übersicht
|übersichtlink=../
}}
}}
[[Kategorie:ToDo]]

Version vom 15. November 2018, 13:42 Uhr

Achsensymmetrische Vierecke und Dreiecke
Blatt.jpg

In diesem Lernpfad wollen wir achsensymmetrische Vierecke und Dreicke kennenlernen. Dazu wollen wir als erstes nochmal wiederholen, was sich hinter dem Begriff der Achsensymmtrie verbirgt.

Notiere alle Merksätze und Definitionen in dein Heft!

Zeitbedarf
45 Min.
Material
dein Heft, Stifte und ein Lineal!
Mathematik-digital


Spiegel1.jpg

1.Station: Wiederholung zur Achsensymmetrie

Kannst du dich noch an den Begriff der Achsensymmetrie erinnern? Oder wann eine Figur achsensymmetrisch ist? Nein? Dann wollen wir uns diese Begriffe zusammen erarbeiten. Vielleicht fällt dir ja dann wieder ein, was es damit auf sich hat. Also los geht´s!

Symmetrieachse

In unserem alltäglichen Leben gibt es einige Gegenstände, die besondere Eigenschaften aufweisen.Hier siehst du einige Beispiele dafür. Erkennst du die Besonderheiten?

Schmetterling1.jpg Blatt.jpg Residenz.jpg Verkehrszeichen.jpg


Du siehst, dass alle Figuren in der Mitte geteilt werden können. Beide Teile haben dieselben Merkmale. Sie werden daher symmetrisch genannt. Wenn man die beiden Teile übereinander legt, überdecken sie sich, d.h sie sind dann deckungsgleich oder kongruent. Da diese Gegenstände aus der Natur kommen, sind sie natürlich nicht zu 100% kongruent. Die Gerade in der Mitte nennen wir Symmetrieachse.

SchmetterlingA.jpg Blatt1.jpg Residenz1.jpg Verkehrszeichen1.jpg

Fallen dir noch mehr Gegenstände aus dem Alltag ein, die symmetrisch sind? Schreibe sie in deinem Heft auf!

Was heißt achsensymmetrisch und kongruent?
Spiegel2.jpg
  • Eine Figur heißt achsensymmetrisch, falls man sie in zwei Teile zerlegen kann und diese sich exakt überdecken.
  • Die beiden Hälften sind dann kongruent zueinander.
  • Die Gerade durch die die Figur geteilt wird, heißt Symmetrieachse.
  • Die Symmetrieachse kann dabei waagrecht, senkrecht oder diagonal durch die Figur verlaufen.
  • Es kann auch mehr als eine Symmetriachse geben!

Ordne zu!

Zuordnung

Ordne die Bilder den richtigen Eigenschaften zu. Dazu musst du die Flaggen mit der linken Maustaste ziehen und fallen lassen, wenn der Hintergrund rot wird.

Übertrage anschließend je zwei Flaggen mit einer und zwei Symmetrieachsen in dein Heft und zeichne die Symmetriachsen ein!
keine Symmetrieachse Griechenland.gif USA.gif Tschecien.gif
eine Symmetrieachse Belgien.gif Norwegen.gif Deutschlandflagge.gif
zwei Symmetrieachsen Jamaika.gif Österreich.gif Mazedonien.gif
vier Symmetrieachsen Schweiz.gif

Konntest du alle Flaggen richtig zuordnen? Prima! Dann können wir ja zur nächsten Aufgabe gehen.

Zeichne achsensymmetrische Figuren

Übertrage die drei Figuren in dein Heft und erweitere sie zu einer achsensymmetrischen Figur!

Hausvervollst.png Stern vervollst.png Figur.png

Hier findest du die Lösung!

Haus3.png Stern1.png Figur1.png

Ich denke, du weißt jetzt wieder, was der Begriff der Achsensymmetrie heißt und was achsensymmetrische Figuren sind!

Spiegel3.jpg

Bevor wir mit einem neuen Thema anfangen, lernen wir noch eine 2.Definition für das Wort achsensymmetrisch kennen. Diese hängt mit der Achsenspiegelung zusammen, die wir in den beiden vorherigen Lernpfaden durchgenommen haben.

Definition Achsensymmetrische Figur
Eine Figur, die man durch eine Achsenspiegelung auf sich selbst abbilden kann, heißt achsensymmetrisch.

2.Station: Achsensymmetrische Vierecke

Finde achsensymmetrische Vierecke
In dieser Aufgabe musst du herausfinden, welche Vierecke achsensymmetrisch sind. Es befinden sich fünf Vierecke im Such-Rätsel. Wenn du dich an Aufgabe 2 erinnerst, fallen dir vielleicht schon zwei Vierecke ein, die du bereits kennst. Viel Spaß beim Suchen!

Finde die Wörter! (Waagrecht (von links nach rechts), senkrecht (von oben nach unten) und diagonal (von links unten nach rechts oben oder von oben links nach unten rechts), gefundene Wörter werden grün markiert)

Quadrat
Rechteck
Raute
Trapez
Drachen

Hast du alle Vierecke gefunden? Falls du nicht auf alle gekommen bist, findest du hier die Lösung.


Es gibt also fünf Vierecke, die achsensymmetrisch sind: das Quadrat, das Rechteck, die Raute, der Drachen und das Trapez.

Vierecke.png


Achtung! Nicht alle Trapeze sind achsensymmetrisch. Nur das gleichschenklige Trapez gehört in diese Gruppe.

Wieviele Symmetrieachsen?

In dieser Aufgabe wollen wir herausfinden, wieviel Symmetrieachsen jedes der Vierecke hat.

Ordne den Vierecken ihren Namen und das Bild ihrer Symmetrieachsen zu. Dazu musst du die Bilder mit der linken Maustaste ziehen und fallenlassen, wenn der Hintergrund rot wird. Viel Spaß!

Zuordnung

Quadrat.png QuadratO.png Quadrat
Raute1.png RauteO.png Raute
Rechteck.png RechteckO.png Rechteck
Drachen.png DrachenO.png Drachen
Trapez.png TrapezO.png Trapez


Überprüfe, ob du alle Symmetrieachsen gefunden hast.

Hier siehst du nochmal alle Symmetrieachsen eingezeichnet.

Vierecke1.png

Achsensymmetrische Vierecke:
Spiegel2.jpg

Es gibt fünf achsensymmetrische Vierecke: das Quadrat, das Rechteck, die Raute, den Drachen und das gleichschenklige Trapez.
Dabei besitzen Drachen und Trapez jeweils eine Symmetrieachse, das Rechteck und die Raute zwei und das Quadrat sogar vier.
Man kann die Vierecke durch die Lage ihrer Symmetrieachsen unterscheiden. Dabei gibt es zwei Fälle.

  • 1. Fall: Die Symmetrieachse verläuft durch die gegenüberliegenden Eckpunkte des Vierecks (Drachen, Raute).
  • 2. Fall: Die Symmetrieachse geht durch die Mittelpunkte gegenüberliegender, paralleler Seiten eines Vierecks (Rechteck, Trapez).
  • Beim Quadrat trifft sowohl Fall 1, als auch Fall 2 zu.


Test

Du kennst jetzt alle achsensymmetrsichen Vierecke und weißt, wieviele Symmetrieachsen sie haben. Kannst du auch folgende Fragen dazu richtig beantworten? Dabei können auch mehrere Antwortmöglichkeiten richtig sein.

Bei welchem Viereck stehen die Symmetrieachsen senkrecht aufeinander? (Raute) (!Trapez) (Rechteck)

Welche Vierecke haben mehr als eine Symmetrieachse?(!Drachen) (Quadrat) (Raute) (!Trapez) (Rechteck)

Die Raute hat ...? (je zwei Paar gleich großer Winkel) (!rechte Winkel) (!ein Paar gleich großer Winkel)

Welches Viereck hat vier gleich lange Seiten?(!Drachen) (Quadrat) (!Rechteck) (Raute)

Bei welchem Viereck verlaufen die Symmetrieachsen durch die Seitenmitten? (Rechteck) (!Raute) (Quadrat) (!Raute)

Hast du alle Fragen richtig beantwortet? Dann geht´s jetzt zur nächsten Station.

Spiegel4.jpg


3.Station: Achsensymmetrische Dreiecke

Es gibt zwei achsensymmetrische Dreiecke. Mal sehen, ob du herausfindest, wie sie heißen.

Erzeuge ein achsensymmetrische Dreieck

Ziehe am Punkt C. Wann wird das Dreieck achsensymmetrisch? Wieviele Symmetrieachsen hat das Dreieck?

GeoGebra

Versuche die Fragen richtig zu beantworten! Klicke dabei entweder auf Richtig oder Falsch!

1 Die Symmetrieachse muss durch einen Eckpunkt des Dreiecks gehen?

Richtig
Falsch

2 Das Dreieck wird durch eine Symmetrieachse halbiert?

Richtig
Falsch

3 Die Winkel am Punkt A und B müssen unterschiedlich groß sein, damit das Dreieck achsensymmetrisch wird!

Richtig
Falsch

4 Zwei Seiten im Dreieck müssen gleich lang sein?

Richtig
Falsch

5 Das Dreieck hat genau zwei Symmetrieachsen.

Richtig
Falsch


Na kannst du dir denken, wie dieses Dreick heißt?

Hier der Merksatz:

Gleichschenkliges Dreieck:
  • Ein achsensymmetrisches Dreieck besitzt zwei gleich lange Seiten. Sie werden Schenkel des Dreiecks genannt.
    Gleichschenklig.png
  • Daher nennt man solch ein Dreieck gleichschenkliges Dreieck.
  • Die dritte Seite des Dreiecks wird als Grundlinie oder Basis bezeichnet.
  • Außerdem sind die beiden Winkel an der Basis gleich groß. Sie heißen daher Basiswinkel.
  • Die Symmetrieachse des Dreiecks geht durch den Eckpunkt, welcher der Basis gegenüberliegt.
  • Dieser Eckpunkt ist ein Fixpunkt.
  • Das Dreieck wird durch die Symmetrieachse halbiert. Dabei wird je ein Schenkel auf den zweiten abgebildet und umgekehrt.


Vierecke in Dreiecke zerlegen

Alle achsensymmetrischen Vierecke können durch ihre Diagonalen in gleichschenklige Dreiecke zerlegt werden. Zeichne dir die Vierecke und die Teildreicke in dein Heft. Zähle dann wieviel Dreiecke du in jedem Viereck entdeckst!


Drachen
DrachenD.png
Den Drachen kann man in zwei gleichschenklige Dreiecke zerlegen. Denn der Drachen hat je zwei gleich lange Seiten.

Raute
RauteD.png
Die Raute kann man in vier gleichschenklige Dreiecke zerlegen. Denn die Raute hat bekanntlich vier gleich lange Seiten. Außerdem sind diese Dreicke jeweils kongruent zueinander.

Trapez
TrapezD.png
Das Trapez kann insgesamt in vier Teildreiecke zerlegt werden, davon sind zwei gleichschenklig.

Rechteck
RechteckD.png
Das Rechteck besitzt insgesamt vier gleichschenklige Teildreiecke. Dabei sind je zwei Dreiecke kongruent zueinander.

Quadrat
QuadratD.png
Das Quadrat kann man sogar in insgesamt acht gleichschenklige Dreiecke zerlegen. Hier gibt es sogar Dreiecke die gleichschenklig und rechtwinklig sind. Des Weiteren sind alle Dreiecke kongruent.

Gleichseitiges Dreieck

Es gibt noch ein achsensymmetrisches Dreieck. Dabei handelt es sich um einen Spezialfall des gleichschenkligen Dreiecks.

Gleichseitig.png


Finde die unverdrehte Lösung zu den verdrehten Wörtern! Achte dabei auf Rechtschreibfehler.

Bei diesem Dreieck sind alle drei Seiten gleich lang. Es wird daher gleichseitiges Dreieck genannt.

Dabei können je zwei Seiten des Dreiecks die Schenkel sein. Im gleichseitigen Dreick gibt es daher drei Symmetrieachsen.

Außerdem sind alle drei Winkel gleich groß. Aus der Innenwinkelsumme im Dreieck folgt, dass die Winkel das Maß 60° besitzen.

Konntest du zu allen Wörtern die richtige Lösug finden? Dann weißt du ja jetzt, wie das Dreieck heißt. Super!

Hier findest du den Merksatz:

Gleichseitiges Dreieck:
  • Ein Spezialfall des gleichschenkligen Dreiecks ist das gleichseitige Dreieck.
    Gleichseitig1.png
  • Bei diesem Dreieck sind alle drei Seiten gleich lang.
  • Es können je zwei Seiten des Dreiecks die Schenkel sein, daher hat dieses Dreieck drei Symmetrieachsen.
  • Ein gleichseitiges Dreieck hat außerdem drei gleich große Winkel.
  • Aufgrund der Innenwinkelsumme des Dreiecks ergibt sich für jeden Winkel das Maß 60°.


4.Station: Übungen

Memory

Hier gibts nochmal ein Memory. Es gehören immer drei Kärtchen zusammen. Folgende Kategorien sind zu finden:

  • achsensymmetrische Verkehrsschilder
  • nicht achsensymmetrische Verkehrsschilder
  • achsensymmetrische Automarken
  • nicht achsensymmetrische Automarken
  • achsensymmetrische Gegenstände aus dem Alltag
Achtung.jpg Halteverbot2.jpg Sackgasse.jpg
PfeilR.jpg Zebrastreifen1.jpg Halteverbot.jpg
Mazda.jpg Renault.jpg Mercedes1.jpg
Skoda1.jpg Seat.jpg Fiat.jpg
Gulli.jpg Fussmatte1.jpg Ahorn.jpg


Kreuze an!

Kreuze die richtige Antwort an. Es können auch mehrere Kästchen richtig sein.

Quadrat Drachen Raute Rechteck Trapez gleichschenkliges Dreieck gleichseitiges Dreieck
Welche der Figuren hat keine Diagonalen?
Welche der Figuren besitzt rechte Winkel?
Bei welchen Figuren stehen die Symmetrieachsen senkrecht aufeinander?
Bei welchen Figuren verläuft die Symmetrieachse durch mind. einen Eckpunkt?
Welche Figur hat mehr als zwei gleich große Winkel?
Welche Figur besitzt nur eine Symmetrieachse und welche hat die meisten Symmetrieachsen?

Zusatzaufgabe

Du kennst bereits achsensymmetrische Dreiecke und Vierecke und deren Symmetrieachsen. Aber wieviel Symmetrieachsen hat eigentlich ein Kreis?

KreisS1.png


KreisS.png

Ein Kreis hat unendlich viele Symmetrieachsen. Hier siehst du einige davon eingezeichnet. Alle Symmetrieachsen verlaufen dabei durch den Mittelpunkt des Kreises. Das heißt alle Symmetrieachsen sind Zentralen des Kreises. Somit stellt jede Zentrale eine Spiegelachse des Kreises dar, an der er auf sich selbst abgebildet werden kann.


Spiegel9.jpg