Quadratische Funktionen erkunden/Von der Scheitelpunkt- zur Normalform: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Elena Jedtke
KKeine Bearbeitungszusammenfassung
Main>Elena Jedtke
KKeine Bearbeitungszusammenfassung
Zeile 135: Zeile 135:
|
|
|-
|-
|<math>=-0,33x^2+3,2x-6,37-7,76</math>||&nbsp;&nbsp;&nbsp;Vereinfachen&nbsp;&nbsp;||<math>f(x)=0,4x^-2x+2,5+4,35</math>||&nbsp;&nbsp;&nbsp;Vereinfachen
|<math>=-0,33x^2+3,2x-6,37-7,76</math>||&nbsp;&nbsp;&nbsp;Vereinfachen&nbsp;&nbsp;||<math>f(x)=0,4x^2-2x+2,5+4,35</math>||&nbsp;&nbsp;&nbsp;Vereinfachen
|-
|-
|
|
Zeile 171: Zeile 171:
|
|
|-
|-
|<math>=0,33x^2-3,86x+11,29+3,4</math>||&nbsp;&nbsp;&nbsp;Vereinfachen&nbsp;&nbsp;||<math>f(x)=0,22x^-4,14x+19,44+3,6</math>||&nbsp;&nbsp;&nbsp;Vereinfachen
|<math>=0,33x^2-3,86x+11,29+3,4</math>||&nbsp;&nbsp;&nbsp;Vereinfachen&nbsp;&nbsp;||<math>f(x)=0,22x^2-4,14x+19,44+3,6</math>||&nbsp;&nbsp;&nbsp;Vereinfachen
|-
|-
|
|
Zeile 207: Zeile 207:
|
|
|-
|-
|<math>=-0,2x^2+2,16x-5,83+2,3</math>||&nbsp;&nbsp;&nbsp;Vereinfachen&nbsp;&nbsp;||<math>f(x)=-0,07x^+1,08x-4,15+5,95</math>||&nbsp;&nbsp;&nbsp;Vereinfachen
|<math>=-0,2x^2+2,16x-5,83+2,3</math>||&nbsp;&nbsp;&nbsp;Vereinfachen&nbsp;&nbsp;||<math>f(x)=-0,07x^2+1,08x-4,15+5,95</math>||&nbsp;&nbsp;&nbsp;Vereinfachen
|-
|-
|
|

Version vom 20. Juli 2017, 09:35 Uhr


Bauarbeiter

In diesem Kapitel kannst du herausfinden, wie du aus quadratischen Funktionen in Scheitelpunktform quadratische Funktionen in Normalform machen kannst.

Du lernst

1.

2.

3.


Nuvola apps edu miscellaneous.png   Beispiel

Für den Basketballwurf konnten näherungsweise diese beiden Funktionsterme gefunden werden:

Basketballwurf Parabel Basketballwurf Parabel

Die Funktionsterme müssen irgendwie ineinander überführbar sein, da sie die gleiche Parabel beschreiben.

Durch Ausmultiplikation der Scheitelpunktform erhalten wir:


Funktionsterm    Schritt-für-Schritt-Anleitung
   Klammer auflösen
   innere Klammer ausmultiplizieren
   Klammer ausmultiplizieren
   Vereinfachen


Ein Blick auf das zweite Bild oben zeigt, dass das Ergebnis der Ausmultiplikation genau der Term in Normalform ist.

Aufgabe 1




Pfeil Hier geht's weiter.png




Erstellt von: Elena Jedtke (Diskussion)