Quadratische Funktionen erkunden/Wiederholung (Optional): Unterschied zwischen den Versionen
Main>Elena Jedtke KKeine Bearbeitungszusammenfassung |
Main>Elena Jedtke (Aufgabe geändert) |
||
Zeile 12: | Zeile 12: | ||
==Graphen zu einer Sachsituation | ==Graphen zu einer Sachsituation== | ||
{{Aufgabe|'''Für diese Aufgabe benötigst du deinen Hefter | {{Aufgabe|'''Für diese Aufgabe benötigst du deinen Hefter [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]]. | ||
'''a)''' Beantworte die Frage in dem Applet. ''Hinweis'': Es gibt genau eine richtige Antwort. | |||
'''a)''' | |||
<iframe src="//LearningApps.org/watch?v=p563afae517" style="border:0px;width:75%;height:500px" webkitallowfullscreen="false" mozallowfullscreen="true"></iframe> | |||
'''b)''' Überlege dir eine Begründung für die richtige Lösung in Aufgabenteil a). | |||
<popup name="Hilfe">Zeichne eine Skizze der Laufbahn in deinen Hefter und trage für ein paar Punkte auf der Bahn die Luftlinien zum Startpunkt ein. Wo ist der Abstand am größten? Wo ist er am geringsten?</popup> | |||
<popup name="Lösung">Der Graph beginnt im Ursprung des Koordinatensystems. Da Start und Ziel identisch sind, endet der Graph auf der x-Achse. Sein Verlauf lässt sich durch die Bewegung der Läufer beschreiben: | |||
: | [[Datei:Skizee 400m Bahn mit Luftlinien.PNG|rahmenlos|300px|Sportfest]] | ||
Zunächst bewegen sich die Läufer von dem Startpunkt weg. In der zweiten Kurve wird ihr Abstand (Luftlinie) zum Start wieder geringer, bis sie genau gegenüber vorbeilaufen. Ab diesem Punkt steigt der Abstand (Luftlinie) noch einmal an und nähert sich schließlich ab der dritten Kurve wieder dem Startpunkt an.</popup>}} | |||
==Zeigt der Graph einen funktionalen Zusammenhang?== | ==Zeigt der Graph einen funktionalen Zusammenhang?== | ||
{{Aufgabe|<iframe src="//LearningApps.org/watch?v=pohhfm2vj16" style="border:0px;width: | {{Aufgabe|<iframe src="//LearningApps.org/watch?v=pohhfm2vj16" style="border:0px;width:75%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>}} | ||
Version vom 20. April 2017, 15:03 Uhr
Bevor du loslegst, dich in das neue Thema Quadratische Funktionen einzuarbeiten, kannst du auf dieser Seite dein bisheriges Wissen über Funktionen auffrischen.
Teste dein Wissen über (lineare) Funktionen
Graphen zu einer Sachsituation
Zeigt der Graph einen funktionalen Zusammenhang?
Videos und Merksätze
Für diese Aufgabe benötigst du deinen Hefter .
Notiere dir zentrale Punkte aus den Videos in deiner Merkliste. Versuche selbstständig Sätze zu formulieren, da du dir eigene Sätze deutlich besser merken können wirst, als vorgefertigte Merksätze.
Im Anschluss kannst du dir die beispielhaften Merksätze anschauen und deine eigenen gegebenenfalls ergänzen. Wenn du noch andere Punkte aufgeschrieben hast, als dort aufgeführt sind, ist das auch gut und sogar erwünscht.
Daniel Jung hat auf Youtube in seinem Channel Mathe by Daniel Jung zu den verschiedensten Themen Erklärvideos erstellt. Hier kannst du dir Videos zu dem Thema Was ist eine Funktion? bzw. eine Übersicht über Lineare Funktionen anschauen. Denke daran dir Kopfhörer anzuziehen, sofern du nicht alleine in einem Raum bist.
<popup name="Beispielhafte Merksätze">
- Eine Funktion ordnet jedem Element einer Ausgangsmenge (Definitionsmenge) genau ein Element der Zielmenge (Ergebnismenge) zu. Ein Element aus der Ergebnismenge kann mehreren Elementen der Definitionsmenge zugeordnet werden.
- Lineare Funktionen liegen in der Form vor, wobei m die Steigung der Geraden und b den y-Achsenabschnitt angibt.
- Funktionen mit dem Term nennt man proportionale Funktionen. Sie sind ein Spezialfall der linearen Funktionen.
</popup>
Erstellt von: Elena Jedtke (Diskussion)