Benutzer:Cloehner/Stochastik Einführungsphase NRW/Stochastische Unabhängigkeit: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 45: | Zeile 45: | ||
Im folgenden Video wird auf Basis der Ergebnisse aus den Aufgaben 1 und 2 erklärt, was der Begriff ''Stochastische Unabhängigkeit'' bedeutet und wie man zwei Ereignisse auf stochastische Unabhängigkeit überprüft. Kontrolliere damit zunächst deine Ergebnisse aus Aufgabe 2 und nutze die Erklärung anschließend, um bei | Im folgenden Video wird auf Basis der Ergebnisse aus den Aufgaben 1 und 2 erklärt, was der Begriff ''Stochastische Unabhängigkeit'' bedeutet und wie man zwei Ereignisse auf stochastische Unabhängigkeit überprüft. Kontrolliere damit zunächst deine Ergebnisse aus Aufgabe 2 und nutze die Erklärung anschließend, um bei Aufgabe 3 zu überprüfen, ob stochastische Unabhängigkeit vorliegt. | ||
Zeile 51: | Zeile 51: | ||
|2=[[Datei:Erklärvideo stochastische Unabhängigkeit.mp4|links|500px]] | |2=[[Datei:Erklärvideo stochastische Unabhängigkeit.mp4|links|500px]] | ||
|3=Kurzinfo}} | |3=Kurzinfo}} | ||
{{Aufgaben|3 | |||
|An Freitagen fehlen David und Clara oft in der Schule, und zwar David mit einer Wahrscheinlichkeit von 0,3 und Clara mit einer Wahrscheinlichkeit von 0,45. Die Wahrscheinlichkeit, dass beide anwesend sind, beträgt nur 0,4. Sind die Abwesenheit von David und Clara unabhängige Ereignisse? | |||
''Quelle: [https://de.serlo.org/mathe/stochastik/bedingte-wahrscheinlichkeit-unabhaengigkeit/unabhaengigkeit-ereignissen/aufgaben-thema-unabhaengigkeit-ereignissen] | |||
Lizenz: [https://creativecommons.org/licenses/by-sa/4.0/]'' | |||
{{Lösung versteckt|[http://de.serlo.org/4101 Hier findest du eine Beispiellösung zur Aufgabe.]|Link zur Lösung einblenden|Link zur Lösung ausblenden}} |
Version vom 25. Mai 2019, 11:01 Uhr
Nicht immer, wenn wir zwei verschiedene Merkmale betrachten, sind die Wahrscheinlichkeiten ihres Eintretens tatsächlich voneinander abhängig. Als Beispiel betrachten wir auf dieser Seite ein Urnen-Experiment:
Stelle die Situation in einer Vierfeldertafel mit Wahrscheinlichkeiten dar und zeichne die beiden zugehörigen Baumdiagramme. Welche Besonderheiten fallen dir auf?
Im folgenden Video wird auf Basis der Ergebnisse aus den Aufgaben 1 und 2 erklärt, was der Begriff Stochastische Unabhängigkeit bedeutet und wie man zwei Ereignisse auf stochastische Unabhängigkeit überprüft. Kontrolliere damit zunächst deine Ergebnisse aus Aufgabe 2 und nutze die Erklärung anschließend, um bei Aufgabe 3 zu überprüfen, ob stochastische Unabhängigkeit vorliegt.
{{Aufgaben|3 |An Freitagen fehlen David und Clara oft in der Schule, und zwar David mit einer Wahrscheinlichkeit von 0,3 und Clara mit einer Wahrscheinlichkeit von 0,45. Die Wahrscheinlichkeit, dass beide anwesend sind, beträgt nur 0,4. Sind die Abwesenheit von David und Clara unabhängige Ereignisse?