Einführung in die Negativen Zahlen/Erweiterung der Zahlengeraden: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Karl Kirst
K (Aufgabe float -> Aufgabe)
Main>Anto23
Keine Bearbeitungszusammenfassung
Zeile 14: Zeile 14:
|}
|}
{{Aufgabe|{{protokollieren}}
{{Aufgabe|{{protokollieren}}
Lest euch das Merkekästchen durch und beschreibt den Aufbau der Zahlengeraden. Erklärt, warum neben den geschweiften Klammern drei Punkte und unter der 0 eine gestrichelte Linie ist.}}
Betrachtet das Merkekästchen. Erklärt, warum neben den geschweiften Klammern drei Punkte und unter der 0 eine gestrichelte Linie ist.}}
{{Merke|
{{Merke|
Wir erweitern unseren bekannten Zahlenstrahl zu einer Zahlengeraden.<br>
Wir erweitern unseren bekannten Zahlenstrahl zu einer Zahlengeraden.<br>
Zeile 26: Zeile 26:
<iframe src="https://learningapps.org/watch?v=pyc1b4ahn18" style="border:0px;width:75%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
<iframe src="https://learningapps.org/watch?v=pyc1b4ahn18" style="border:0px;width:75%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
<br><br>
<br><br>
<b>2. Von den beiden folgenden Aufgaben könnt ihr eine auswählen.</b> Die linke Aufgabe ist etwas leichter als die rechte Aufgabe.
 
<b>2. Welche Zahl liegt in der Mitte zwischen -8 und 6? Benutzt die Zahlengerade, um die Aufgabe zu lösen. Beschreibt auf dem Protokoll, wie ihr die Aufgabe gelöst habt.</b><br>
{|width=100%
|-
|width=50%|
<quiz display="simple">
{Zwischen -8 und 6 liegt}
- <nowiki>0</nowiki>
+ -1
- -2
</quiz>
|width=50%|
[[Datei:Aufgabe_Mitte.JPG|200px]]
|}
 
<br><br><br>
<b>3. Von den beiden folgenden Aufgaben könnt ihr eine auswählen.</b> Die linke Aufgabe ist etwas leichter als die rechte Aufgabe. Für beide Aufgaben könnt ihr die Zahlengerade benutzen.  
<br>
<br>
{|cellpadding="8" width=100%
{|cellpadding="8" width=100%
Zeile 62: Zeile 78:
<br>
<br>
{{Aufgabe|{{protokollieren}}
{{Aufgabe|{{protokollieren}}
Lest euch das Merkekästchen gut durch und notiert auf eurem Protokoll drei Beispiele zu entgegengesetzten Zahlen und zwei Beispiele zum Betrag.}}
Lest euch das Merkekästchen gut durch und notiert auf eurem Protokoll <b>drei</b> Beispiele zu entgegengesetzten Zahlen und <b>zwei</b> Beispiele zum Betrag.}}
{{Merke|Zwei Zahlen, die ein entgegengesetztes Vorzeichen, aber zur Null denselben Abstand haben, heißen <b>entgegengesetzte Zahlen</b>. Der Abstand einer Zahl zur 0 heißt <b>Betrag</b> und wird mit Betragsstrichen gekennzeichnet, z.B. |-4|=4; |+4|=4.}}
{{Merke|1=
* Zwei Zahlen, die ein entgegengesetztes Vorzeichen, aber zur Null denselben Abstand haben, heißen <b>entgegengesetzte Zahlen</b>.  
* Der Abstand einer Zahl zur 0 heißt <b>Betrag</b> und wird mit Betragsstrichen gekennzeichnet, z.B. <nowiki>|</nowiki>-4<nowiki>|</nowiki> = 4; <nowiki>|</nowiki>+4<nowiki>|</nowiki> = 4.}}


<popup name="Weitere Erklärungen zum Betrag">
<i>Weitere Erklärungen zum Betrag</i><br>
Der Betrag gibt den Abstand von einer Zahl zur 0 an. Sowohl von der -9 als auch von der 9 muss man 9 Schritte bis zur 0 gehen. Deswegen haben -9 und 9 denselben Abstand, also auch denselben Betrag. Der Betrag ist immer positiv, hat also immer ein "+" als Vorzeichen, weil man ja nicht z.B. -9 Schritte gehen kann.</popup>
Der Betrag gibt den Abstand von einer Zahl zur 0 an. Sowohl von der -9 als auch von der 9 muss man 9 Schritte bis zur 0 gehen. Deswegen haben -9 und 9 denselben Abstand, also auch denselben Betrag. Der Betrag ist immer positiv, hat also immer ein "+" als Vorzeichen, weil man ja nicht z.B. -9 Schritte gehen kann. Der Betrag der 0 ist 0, da man ja keine Schritte mehr laufen muss, um zur 0 zu gelangen.
<br>
<br>


Zeile 74: Zeile 92:
|valign=top|
|valign=top|
{{Aufgabe|{{kommunizieren}}{{protokollieren}}
{{Aufgabe|{{kommunizieren}}{{protokollieren}}
An manchen analogen Thermometern findet man bei den Zahlen unter 0 kein Minuszeichen. Findet gemeinsam 1-2 Argumente dafür und 1-2 Argumente dagegen, das Minuszeichen auf Thermometern mitzuschreiben. Positioniert euch dafür oder dagegen.}}<br>[[Datei: Pfeil_Weiter.JPG|200px|link=Einführung_in_die_Negativen_Zahlen/Ordnen_von_negativen_Zahlen]]
An manchen analogen Thermometern findet man bei den Zahlen unter 0 kein Minuszeichen. Findet gemeinsam mindestens einen Grund dafür und mindestens einen Grund dagegen, das Minuszeichen auf Thermometern mitzuschreiben.}}<br>[[Datei: Pfeil_Weiter.JPG|200px|link=Einführung_in_die_Negativen_Zahlen/Ordnen_von_negativen_Zahlen]]
|[[Datei:Thermometer.jpg|miniatur|Ein analoges Thermometer]]
|[[Datei:Thermometer.jpg|miniatur|Ein analoges Thermometer]]
|}
|}

Version vom 17. April 2018, 08:29 Uhr


Frage
Was ist der Unterschied zwischen der 4 unter der Null und der 4 über der Null?



Aufgabe

Vorlage:Protokollieren

Betrachtet das Merkekästchen. Erklärt, warum neben den geschweiften Klammern drei Punkte und unter der 0 eine gestrichelte Linie ist.

Merke

Wir erweitern unseren bekannten Zahlenstrahl zu einer Zahlengeraden.

Zahlengerade2.JPG

<popup name="Lösungsvorschlag"> Links von der Null findet man die negativen Zahlen, rechts von der Null die positiven Zahlen. Die geschweiften Klammern haben jeweils drei Punkte, weil es unendlich viele positive und unendlich viele negative Zahlen gibt. Die gestrichelte Linie unter der 0 bedeutet, dass die 0 weder positiv noch negativ ist.</popup>

Übung
Bearbeitet die folgenden Aufgaben.



1. Findet zu jeder Situation eine passende ganze Zahl. Ordnet die Situation an die richtige Stelle auf der Zahlengeraden.

2. Welche Zahl liegt in der Mitte zwischen -8 und 6? Benutzt die Zahlengerade, um die Aufgabe zu lösen. Beschreibt auf dem Protokoll, wie ihr die Aufgabe gelöst habt.

Zwischen -8 und 6 liegt

0
-1
-2

Aufgabe Mitte.JPG




3. Von den beiden folgenden Aufgaben könnt ihr eine auswählen. Die linke Aufgabe ist etwas leichter als die rechte Aufgabe. Für beide Aufgaben könnt ihr die Zahlengerade benutzen.

[1]

Welche Zahl liegt genau in der Mitte der angegebenen Zahlen?[2]
(Die Sternchen-Aufgaben sind schwerer als die anderen.)

a) 7 und 17
b) -8 und 0
c) -8 und 12
d) -2 und 6
*e) -100 und -36
*f) -28 und 12
<popup name="Tipp"> Die gesuchte Zahl muss zu beiden Zahlen denselben Abstand haben.
Wenn ihr nicht weiterkommt, nehmt die Zahlengerade zu Hilfe. </popup>
<popup name="Lösung"> a) 12 b) -4 c) 2 d) 2 e) -68 f) -8 </popup>


Entgegengesetzte Zahlen und Betrag


Aufgabe
Mitte zwischen zwei Zahlen.JPG
Vorlage:KommunizierenVorlage:Protokollieren
Welche Zahlen könnt ihr für die Fragezeichen einsetzen? Löst und begründet eure Antwort auf dem Protokoll.

<popup name="Lösungsvorschlag"> Man kann für die Fragezeichen alle Zahlen einsetzen, die sich nur durch das Vorzeichen unterscheiden, also z.B. -3 & 3, -18 & 18, -5 & 5,… , da diese Zahlenpaare denselben Abstand zur 0 haben. </popup>


Aufgabe

Vorlage:Protokollieren

Lest euch das Merkekästchen gut durch und notiert auf eurem Protokoll drei Beispiele zu entgegengesetzten Zahlen und zwei Beispiele zum Betrag.

Merke
  • Zwei Zahlen, die ein entgegengesetztes Vorzeichen, aber zur Null denselben Abstand haben, heißen entgegengesetzte Zahlen.
  • Der Abstand einer Zahl zur 0 heißt Betrag und wird mit Betragsstrichen gekennzeichnet, z.B. |-4| = 4; |+4| = 4.


Weitere Erklärungen zum Betrag
Der Betrag gibt den Abstand von einer Zahl zur 0 an. Sowohl von der -9 als auch von der 9 muss man 9 Schritte bis zur 0 gehen. Deswegen haben -9 und 9 denselben Abstand, also auch denselben Betrag. Der Betrag ist immer positiv, hat also immer ein "+" als Vorzeichen, weil man ja nicht z.B. -9 Schritte gehen kann. Der Betrag der 0 ist 0, da man ja keine Schritte mehr laufen muss, um zur 0 zu gelangen.


Aufgabe

Vorlage:KommunizierenVorlage:Protokollieren

An manchen analogen Thermometern findet man bei den Zahlen unter 0 kein Minuszeichen. Findet gemeinsam mindestens einen Grund dafür und mindestens einen Grund dagegen, das Minuszeichen auf Thermometern mitzuschreiben.

Pfeil Weiter.JPG
Ein analoges Thermometer


Einzelnachweise

  1. übernommen und erweitert aus: mathe.delta - Berlin/Brandenburg (2016), Bamberg: C.C. Buchner, S. 19
  2. in Anlehnung an: mathe.delta - Berlin/Brandenburg (2016), Bamberg: C.C. Buchner, S. 19