Einführung in die Negativen Zahlen/Erweiterung der Zahlengeraden: Unterschied zwischen den Versionen
Main>Anto23 Keine Bearbeitungszusammenfassung |
Main>Anto23 Keine Bearbeitungszusammenfassung |
||
Zeile 15: | Zeile 15: | ||
{{Aufgabe|{{protokollieren}} | {{Aufgabe|{{protokollieren}} | ||
Lest euch das Merkekästchen durch und beschreibt den Aufbau der Zahlengeraden. Erklärt, warum neben den geschweiften Klammern drei Punkte und unter der 0 eine gestrichelte Linie ist.}} | Lest euch das Merkekästchen durch und beschreibt den Aufbau der Zahlengeraden. Erklärt, warum neben den geschweiften Klammern drei Punkte und unter der 0 eine gestrichelte Linie ist.}} | ||
{{Merke| | {{Merke| | ||
Wir erweitern unseren bekannten Zahlenstrahl zu einer Zahlengeraden.<br> | Wir erweitern unseren bekannten Zahlenstrahl zu einer Zahlengeraden.<br> | ||
[[Datei:Zahlengerade2.JPG|600px|links]]}} | [[Datei:Zahlengerade2.JPG|600px|links]]}} | ||
<br> | <popup name="Lösungsvorschlag"> | ||
Links von der Null findet man die negativen Zahlen, rechts von der Null die positiven Zahlen. Die geschweiften Klammern haben jeweils drei Punkte, weil es unendlich viele positive und unendlich viele negative Zahlen gibt. Die gestrichelte Linie unter der 0 bedeutet, dass die 0 weder positiv noch negativ ist.</popup> | |||
<br><br> | |||
{{Übung|Bearbeitet die folgenden Aufgaben.}} | {{Übung|Bearbeitet die folgenden Aufgaben.}} | ||
<br> | <br> | ||
<b>1. Findet zu jeder Situation eine passende ganze Zahl. Ordnet die Situation an die richtige Stelle auf der Zahlengeraden.</b> | <b>1. Findet zu jeder Situation eine passende ganze Zahl. Ordnet die Situation an die richtige Stelle auf der Zahlengeraden.</b> | ||
<iframe src="https://learningapps.org/watch?v=pyc1b4ahn18" style="border:0px;width:75%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> | <iframe src="https://learningapps.org/watch?v=pyc1b4ahn18" style="border:0px;width:75%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> | ||
<br><br> | <br><br> | ||
<b>2. Von den beiden folgenden Aufgaben könnt ihr eine auswählen.</b> | <b>2. Von den beiden folgenden Aufgaben könnt ihr eine auswählen.</b> Die linke Aufgabe ist etwas leichter als die rechte Aufgabe. | ||
<br> | <br> | ||
{|cellpadding="8" width=100% | {|cellpadding="8" width=100% | ||
Zeile 33: | Zeile 33: | ||
<iframe src="https://learningapps.org/watch?v=pn6cw32dn18" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> | <iframe src="https://learningapps.org/watch?v=pn6cw32dn18" style="border:0px;width:100%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> | ||
|valign=top width=50%| | |valign=top width=50%| | ||
Welche Zahl liegt genau in der Mitte der angegebenen Zahlen?<br><br> | Welche Zahl liegt genau in der Mitte der angegebenen Zahlen? (Die Sternchen-Aufgaben sind schwerer als die anderen.)<br><br> | ||
a) 7 und 16<br> | a) 7 und 16<br> | ||
b) -8 und 0<br> | b) -8 und 0<br> | ||
Zeile 45: | Zeile 45: | ||
<br> | <br> | ||
<popup name="Lösung"> | <popup name="Lösung"> | ||
a)13, b)-4, c)4, d)1, e)74, f)-8 | a) 13, b) -4, c) 4, d) 1, e) 74, f) -8 | ||
</popup> | </popup> | ||
|} | |} | ||
Zeile 63: | Zeile 63: | ||
{{Aufgabe|{{protokollieren}} | {{Aufgabe|{{protokollieren}} | ||
Lest euch das Merkekästchen gut durch und notiert auf eurem Protokoll drei Beispiele zu entgegengesetzten Zahlen und zwei Beispiele zum Betrag.}} | Lest euch das Merkekästchen gut durch und notiert auf eurem Protokoll drei Beispiele zu entgegengesetzten Zahlen und zwei Beispiele zum Betrag.}} | ||
{| | {{Merke|Zwei Zahlen, die ein entgegengesetztes Vorzeichen, aber zur Null denselben Abstand haben, heißen <b>entgegengesetzte Zahlen</b>. Der Abstand einer Zahl zur 0 heißt <b>Betrag</b> und wird mit Betragsstrichen gekennzeichnet, z.B. |-4|=4; |+4|=4.}} | ||
|- | |||
| | |||
<popup name="Weitere Erklärungen zum Betrag"> | <popup name="Weitere Erklärungen zum Betrag"> | ||
Der Betrag gibt den Abstand von einer Zahl zur 0 an. Sowohl von der -9 als auch von der 9 muss man 9 Schritte bis zur 0 gehen. Deswegen haben -9 und 9 denselben Abstand, also auch denselben Betrag. | Der Betrag gibt den Abstand von einer Zahl zur 0 an. Sowohl von der -9 als auch von der 9 muss man 9 Schritte bis zur 0 gehen. Deswegen haben -9 und 9 denselben Abstand, also auch denselben Betrag. Der Betrag ist immer positiv, hat also immer ein "+" als Vorzeichen, weil man ja nicht z.B. -9 Schritte gehen kann.</popup> | ||
<br> | <br> | ||
Version vom 5. April 2018, 08:49 Uhr
Frage
Was ist der Unterschied zwischen der 4 unter der Null und der 4 über der Null?
|
|
|
|
<popup name="Lösungsvorschlag">
Links von der Null findet man die negativen Zahlen, rechts von der Null die positiven Zahlen. Die geschweiften Klammern haben jeweils drei Punkte, weil es unendlich viele positive und unendlich viele negative Zahlen gibt. Die gestrichelte Linie unter der 0 bedeutet, dass die 0 weder positiv noch negativ ist.</popup>
1. Findet zu jeder Situation eine passende ganze Zahl. Ordnet die Situation an die richtige Stelle auf der Zahlengeraden.
2. Von den beiden folgenden Aufgaben könnt ihr eine auswählen. Die linke Aufgabe ist etwas leichter als die rechte Aufgabe.
|
Welche Zahl liegt genau in der Mitte der angegebenen Zahlen? (Die Sternchen-Aufgaben sind schwerer als die anderen.) |
Entgegengesetzte Zahlen und Betrag
Welche Zahlen könnt ihr für die Fragezeichen einsetzen? Löst und begründet eure Antwort auf dem Protokoll.
<popup name="Lösungsvorschlag"> Man kann für die Fragezeichen alle Zahlen einsetzen, die sich nur durch das Vorzeichen unterscheiden, also z.B. -3 & 3, -18 & 18, -5 & 5,… , da diese Zahlenpaare denselben Abstand zur 0 haben. </popup>
<popup name="Weitere Erklärungen zum Betrag">
Der Betrag gibt den Abstand von einer Zahl zur 0 an. Sowohl von der -9 als auch von der 9 muss man 9 Schritte bis zur 0 gehen. Deswegen haben -9 und 9 denselben Abstand, also auch denselben Betrag. Der Betrag ist immer positiv, hat also immer ein "+" als Vorzeichen, weil man ja nicht z.B. -9 Schritte gehen kann.</popup>