Grundlagen der Wahrscheinlichkeitsrechnung/Abschlusstest: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 7: | Zeile 7: | ||
{{Box| | {{Box|Aufgabe 1| | ||
|Üben}} | |Üben}} | ||
<div class="zuordnungs-quiz"> | <div class="zuordnungs-quiz"> | ||
Zeile 25: | Zeile 25: | ||
{{Box| | {{Box|Aufgabe 2| | ||
Bei dem jährlichen Schulfest findet eine Verlosung statt. Dabei wurde eine Kugel aus einem Eimer mit 65 schwarzen, 18 roten und 3 weißen Kugeln gezogen. Wie groß ist die Wahrscheinlichkeit... | Bei dem jährlichen Schulfest findet eine Verlosung statt. Dabei wurde eine Kugel aus einem Eimer mit 65 schwarzen, 18 roten und 3 weißen Kugeln gezogen. Wie groß ist die Wahrscheinlichkeit... | ||
Zeile 46: | Zeile 46: | ||
|Üben}} | |Üben}} | ||
{{Box| | {{Box|Aufgabe 3| | ||
Man wählt eine zufällige Zahl zwischen 13 und 53. Gib die Ereignismenge und die Wahrscheinlichkeiten für folgende Ereignisse an: | Man wählt eine zufällige Zahl zwischen 13 und 53. Gib die Ereignismenge und die Wahrscheinlichkeiten für folgende Ereignisse an: | ||
:a) Die Zahl ist ungerade | :a) Die Zahl ist ungerade | ||
Zeile 90: | Zeile 90: | ||
|Üben}} | |Üben}} | ||
{{Box| | {{Box|Aufgabe 4| | ||
In einer Box sind 12 verschieden farbige Kugeln, darunter befindet sich eine rote Kugel. | In einer Box sind 12 verschieden farbige Kugeln, darunter befindet sich eine rote Kugel. | ||
:a) Es werden nacheinander vier Kugeln gezogen und zur Seite gelegt. Darunter befindet sich die rote Kugel nicht. Wie groß ist die Wahrscheinlichkeit, als Nächstes die rote Kugel zu ziehen? | :a) Es werden nacheinander vier Kugeln gezogen und zur Seite gelegt. Darunter befindet sich die rote Kugel nicht. Wie groß ist die Wahrscheinlichkeit, als Nächstes die rote Kugel zu ziehen? | ||
Zeile 108: | Zeile 108: | ||
|Üben}} | |Üben}} | ||
{{Box| | {{Box|Aufgabe 5| | ||
Ein nicht fairer Würfel mit den Augenzahlen 1-4 hat bei 500 Testdurchläufen folgende Daten geliefert: | Ein nicht fairer Würfel mit den Augenzahlen 1-4 hat bei 500 Testdurchläufen folgende Daten geliefert: | ||
Zeile 174: | Zeile 174: | ||
|Üben}} | |Üben}} | ||
{{Box| | {{Box|Aufgabe 8| | ||
Eine Klassenarbeit in Mathematik hat den folgenden Notenspiegel: | Eine Klassenarbeit in Mathematik hat den folgenden Notenspiegel: | ||
{| class="wikitable" | {| class="wikitable" | ||
Zeile 204: | Zeile 204: | ||
|Üben}} | |Üben}} | ||
{{Box| | {{Box|Aufgabe 9| | ||
Im Sommer 2009 gab es in Berlin folgende Zahlen an Schulabgängern: | Im Sommer 2009 gab es in Berlin folgende Zahlen an Schulabgängern: | ||
Zeile 232: | Zeile 232: | ||
|Üben}} | |Üben}} | ||
{{Box| | {{Box|Aufgabe 10| | ||
Ein Glücksrad ist in 12 gleichgroße Sektoren eingeteilt, die von 1 bis 12 nummeriert sind. Das Glücksrad wird einmal gedreht. | Ein Glücksrad ist in 12 gleichgroße Sektoren eingeteilt, die von 1 bis 12 nummeriert sind. Das Glücksrad wird einmal gedreht. | ||
Version vom 7. Juli 2018, 17:38 Uhr
Du bist nun am Ende des Lernpfades zur Einführung in die Wahrscheinlichkeitsrechnung angekommen.
Um dein Wissen über Wahrscheinlichkeiten zu testen, bearbeite alle Aufgaben des folgenden Abschlusstest, der durchmischt Aufgaben zu allen Themen dieses Lernpfades erhält.
Die Lösungen enthalten nur die Antworten, jedoch nicht den Lösungsweg, sondern ein Hinweis zu dem Themengebiet, den du wiederholen solltest, falls die jeweilige Aufgabe noch nicht so gut geklappt hat.
Zuordnung
Bestimme, ob es sich bei den Vorgängen um Zufallsexperimente handelt oder nicht.
Zufallsexperiment | Eine Karte aus einem Kartenstapel ziehen | Wettervorhersage | Glücksrad drehen | Eine Person befragen, welche Partei sie wählen wird |
kein Zufallsexperiment | Hütchenspielen | Testen wann Wasser zu kochen beginnt |
Thema der Aufgabe: Zufallsexperiment
Bei dem jährlichen Schulfest findet eine Verlosung statt. Dabei wurde eine Kugel aus einem Eimer mit 65 schwarzen, 18 roten und 3 weißen Kugeln gezogen. Wie groß ist die Wahrscheinlichkeit...
- a) eine schwarze Kugel zu ziehen?
- b) keine rote Kugel zu ziehen?
- c) eine rote oder weiße Kugel zu ziehen?
- a) P("schwarze Kugel") = 0,7558 => 75,58%
- b) P("keine rote Kugel") = 0,7907 => 79,07%
- c) P("weiße oder rote Kugel") = 0,2442 => 24,42%
Thema der Aufgabe: Laplace-Experiment
Man wählt eine zufällige Zahl zwischen 13 und 53. Gib die Ereignismenge und die Wahrscheinlichkeiten für folgende Ereignisse an:
- a) Die Zahl ist ungerade
- b) Die Zahl ist durch 4 teilbar
- c) Die Zahl ist eine Primzahl und gerade
- d) Die Zahl enthält die Ziffer 5
Lösung für a):
A: Eine ungerade Zahl wird gezogen
A = {13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53}
P(A) = 0,5122 => 51,22%
Lösung für b):
B: Eine Zahl wird gezogen, die durch 4 teilbar ist
B = {16, 20, 24, 28, 32, 36, 40, 44, 48, 52}
P(B) = 0,2439 => 24,39%
Lösung für c):
C: Eine Zahl wird gezogen, die Primzahl ist und gerade
C = { }
P(C) = 0
Lösung für d):
D: Die Zahl die gezogen wird, enthält die Ziffer 5
D = {15, 25, 35, 45, 50, 51, 52, 53}
P(D) = 0,1951 => 19,51%Themen der Aufgabe: Ereignisse und Laplace-Experiment
In einer Box sind 12 verschieden farbige Kugeln, darunter befindet sich eine rote Kugel.
- a) Es werden nacheinander vier Kugeln gezogen und zur Seite gelegt. Darunter befindet sich die rote Kugel nicht. Wie groß ist die Wahrscheinlichkeit, als Nächstes die rote Kugel zu ziehen?
- b) Wie groß ist die Wahrscheinlichkeit, im vierten Zug die rote zu ziehen, wenn die drei zuvor gezogenen Kugeln jedes Mal wieder zurückgelegt werden?
Lösung für a):
P("rote Kugel ziehen") = 0,125 => 12,5%
Lösung für b):
P("rote Kugel ziehen") = 0,0833 => 8,33%Thema der Aufgabe: Laplace-Experiment
Ein nicht fairer Würfel mit den Augenzahlen 1-4 hat bei 500 Testdurchläufen folgende Daten geliefert:
{Aus dem Wort „ZUFALLSEXPERIMENT“ wird zufällig ein Buchstabe ausgewählt. Bestimme die Wahrscheinlichkeit für folgende Ereignisse:
- a) A: Es handelt sich um ein „E“.
- b) B: Es handelt sich um einen Konsonanten.
- c) C: Es handelt sich um einen Vokal.
- a) P(A) = 0,1176
- b) P(B) = 0,647
- c) P(C) = 0,3529
Thema der Aufgabe: Laplace-Experiment
In einem Würfelspielt steht folgende Spielregel: "Man werfe zwei Würfel und bilde die größtmögliche Zahl aus den beiden Augenzahlen" (Beispiel: Wenn man eine 2 und eine 4 würfelt, ist das die Zahl 42)
- a) Gib den Ergebnisraum für dieses Spiel an.
- b) Gib folgende Ereignismengen an:
- 1) A: Die gebildete Zahl besteht aus zwei gleichen Ziffern.
- 2) B: Die Zahl enthält mindestens eine 4.
- 3) D: Die Zahl ist größer als 50.
- a) = {11, 21, 31, 41, 51, 61, 22, 32, 42, 52, 62, 33, 43, 53, 63, 44, 54, 64, 55, 65, 66}
- b)
- 1) A = {11, 22, 33, 44, 55, 66}
- 2) B = {41, 42, 43, 44, 54, 64}
- 3) C = {53, 54, 55, 61, 62, 63, 64, 65, 66}
Themen der Aufgabe: Ergebnisraum und Ereignisse
Eine Klassenarbeit in Mathematik hat den folgenden Notenspiegel:
{Im Sommer 2009 gab es in Berlin folgende Zahlen an Schulabgängern:
{Ein Glücksrad ist in 12 gleichgroße Sektoren eingeteilt, die von 1 bis 12 nummeriert sind. Das Glücksrad wird einmal gedreht.
Mit welcher Wahrscheinlichkeit erhält man...
a) eine Zahl, die größer 10 oder kleiner als 3 ist?
b) eine Primzahl?
c) eine Zahl, die durch 4 teilbar ist?
Lösung für a):
P(A) = 0,33
Lösung für b):
P(B) = 0,4167
Lösung für c):
P(C) = 0,25Thema der Aufgabe: Laplace-Experiment
- Weißt du noch? Absolute und relative Häufigkeiten
- Einstiegsproblem: Die zufällige Shuffle-Funktion
- Simulation der Shuffle-Funktion
- Noch mehr Simulation zur Shuffle-Funktion
- Abschluss des Einstiegsproblems
- Einführung in die Wahrscheinlichkeitsrechnung