Quadratische Funktionen erkunden/Die Scheitelpunktform: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 8: Zeile 8:
}}
}}


 
{{Box
{{Aufgaben|1|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 9)''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
|Aufgabe 1
|'''Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 9)''' [[Datei:Notepad-117597.svg|right|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].


Finde Werte für a, d und e, so dass <math>f(x)</math> die Kurve auf dem Bild möglichst gut beschreibt. Entscheide dich für drei Hintergrundbilder deiner Wahl und notiere den Funktionsterm in deinem Hefter. Wenn du noch weiter arbeiten möchtest, kannst du auch einige der übrigen Hintergundbilder bearbeiten.
Finde Werte für a, d und e, so dass <math>f(x)</math> die Kurve auf dem Bild möglichst gut beschreibt. Entscheide dich für drei Hintergrundbilder deiner Wahl und notiere den Funktionsterm in deinem Hefter. Wenn du noch weiter arbeiten möchtest, kannst du auch einige der übrigen Hintergundbilder bearbeiten.


<iframe scrolling="no" src="https://www.geogebra.org/material/iframe/id/cDyjWjkp/sri/true/width/895/height/610/border/888888/smb" width="895px" height="610px" style="border:0px;"> </iframe>
<ggb_applet width="100%" height="610" version="4.2" showMenuBar="true" showResetIcon="true" id="cDyjWjkp" />


<popup name="Lösungsvorschläge">
{{Lösung versteckt|1=
Da es nicht die eine richtige Lösung gibt, findest du in der Tabelle Lösungsvorschläge sowie Spielräume, in denen die Parameter liegen können, um den Verlauf angemessen zu beschreiben.
Da es nicht die eine richtige Lösung gibt, findest du in der Tabelle Lösungsvorschläge sowie Spielräume, in denen die Parameter liegen können, um den Verlauf angemessen zu beschreiben.


Zeile 39: Zeile 40:
|-
|-
| Basketball || <math>f(x)=-0.32(x-6.5)^2+6.45</math> || -0.35 ≤ a ≤ -0.29 || 6.20 ≤ d ≤ 6.80 || 6.20 ≤ e ≤ 6.70
| Basketball || <math>f(x)=-0.32(x-6.5)^2+6.45</math> || -0.35 ≤ a ≤ -0.29 || 6.20 ≤ d ≤ 6.80 || 6.20 ≤ e ≤ 6.70
|}</popup>}}
|}
 
|2=Lösungsvorschläge anzeigen|3=Lösungsvorschläge verbergen}}
|Arbeitsmethode
}}


{{Aufgaben|2|'''Für diese Aufgabe benötigst du deinen Hefter (Merkliste, S. 3)''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
{{Aufgaben|2|'''Für diese Aufgabe benötigst du deinen Hefter (Merkliste, S. 3)''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].

Version vom 28. Februar 2018, 17:33 Uhr

In diesem Kapitel des Lernpfads wirst du Experte für die Scheitelpunktform quadratischer Funktionen. Du kannst

  1. selbstständig mithilfe der vorliegenden Applets reale Flugkurven, Gebäude oder Phänomene aus der Natur modellieren,
  2. in einem Zuordnungsquiz selbst überprüfen, ob du alles verstanden hast, und
  3. abschließend in Partnerarbeit Flugkurven in verschiedenen Sportarten untersuchen.

Aufgabe 1
Für diese Aufgabe benötigst du deinen Hefter (Lernpfadaufgaben, S. 9)
Notizblock mit Bleistift
.

Finde Werte für a, d und e, so dass die Kurve auf dem Bild möglichst gut beschreibt. Entscheide dich für drei Hintergrundbilder deiner Wahl und notiere den Funktionsterm in deinem Hefter. Wenn du noch weiter arbeiten möchtest, kannst du auch einige der übrigen Hintergundbilder bearbeiten.

GeoGebra

- ! Hintergrundbild!! Lösungsvorschlag !! Parameter a !! Parameter d !! Parameter e

Aufgabe 2

Für diese Aufgabe benötigst du deinen Hefter (Merkliste, S. 3) Notizblock mit Bleistift.

Denke dir eine quadratische Funktion in Scheitelpunktform aus. Notiere den Term und fertige eine Skizze des Funktionsgraphen im Koordinatensystem an. Zur Kontrolle kannst du das oben stehende GeoGebra-Applet nutzen.


Merke
Terme quadratischer Funktionen können in der Form angegeben werden (wobei a ≠ 0). Diese Darstellungsform nennt man Scheitelpunktform, da sich direkt aus dem Term der Scheitelpunkt ablesen lässt. Er hat die Koordinaten .


Aufgabe 3
{{{2}}}


Aufgabe 4
{{{2}}}



Pfeil Hier geht's weiter.png


Erstellt von: --Carsten (Diskussion) 15:24, 5. Nov. 2016 (CET)

Bearbeitet von: Elena Jedtke (Diskussion)