Benutzer:Cloehner/Stochastik Einführungsphase NRW/Stochastische Unabhängigkeit: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 1: Zeile 1:
   
   


Nicht immer, wenn wir zwei verschiedene Merkmale betrachten, sind die Wahrscheinlichkeiten ihres Eintretens tatsächlich voneinander abhängig. Als Beispiel betrachten wir auf dieser Seite einen Zufallsversuch, der auf dem Ziehen mit Zurücklegen basiert:
Nicht immer, wenn wir zwei verschiedene Merkmale betrachten, sind die Wahrscheinlichkeiten ihres Eintretens tatsächlich voneinander abhängig. Als Beispiel betrachten wir auf dieser Seite ein Urnen-Experiment:




Zeile 37: Zeile 37:


</div> -->
</div> -->
{{Aufgaben|2|Stelle die Situation in einer Vierfeldertafel mit ''Wahrscheinlichkeiten'' dar und zeichne die beiden zugehörigen Baumdiagramme. Welche Besonderheiten fallen dir auf?
{{Lösung versteckt|Wenn drei von 36 Kugeln blau und markiert sind, so ist die Wahrhscheinlichkeit dafür, dass eine solche Kugel gezogen wird <math> \frac{3}{36}</math>|Tipp anzeigen|Tipp ausblenden}}
}}
Im folgenden Video wird auf Basis der Ergebnisse aus Aufgabe 2 erklärt, was der Begriff ''Stochastische Unabhängigkeit'' bedeutet und wie man zwei Ereignisse auf stochastische Unabhängigkeit überprüft. Kontrolliere damit zunächst deine Ergebnisse aus Aufgabe 2 und nutze die Erklärung anschließend, um bei den folgenden Aufgaben zu überprüfen, ob stochastische Unabhängigkeit vorliegt.
{{Box|Stochastische Unabhängigkeit|...<!-- Video einfügen -->|Kurzinfo}}

Version vom 25. Mai 2019, 08:42 Uhr


Nicht immer, wenn wir zwei verschiedene Merkmale betrachten, sind die Wahrscheinlichkeiten ihres Eintretens tatsächlich voneinander abhängig. Als Beispiel betrachten wir auf dieser Seite ein Urnen-Experiment:


Kugeln mit und ohne Markierung
In einer Urne befinden sich insgesamt 36 farbige Kugeln. Zwei Drittel aller Kugeln sind rot, die restlichen Kugeln sind blau. 6 rote Kugeln und 3 blaue Kugeln wurden zusätzlich mit einem weißen Ring markiert.


Aufgabe 1
Ergänze die Vierfeldertafel mit absoluten Häufigkeiten so, dass sie zur Situation passt.


Aufgabe 2

Stelle die Situation in einer Vierfeldertafel mit Wahrscheinlichkeiten dar und zeichne die beiden zugehörigen Baumdiagramme. Welche Besonderheiten fallen dir auf?

Wenn drei von 36 Kugeln blau und markiert sind, so ist die Wahrhscheinlichkeit dafür, dass eine solche Kugel gezogen wird


Im folgenden Video wird auf Basis der Ergebnisse aus Aufgabe 2 erklärt, was der Begriff Stochastische Unabhängigkeit bedeutet und wie man zwei Ereignisse auf stochastische Unabhängigkeit überprüft. Kontrolliere damit zunächst deine Ergebnisse aus Aufgabe 2 und nutze die Erklärung anschließend, um bei den folgenden Aufgaben zu überprüfen, ob stochastische Unabhängigkeit vorliegt.


Stochastische Unabhängigkeit
...