Nachricht für neue Nutzer.

Nachricht für engagierte Nutzer.

Achsensymmetrische Vierecke und Dreiecke: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 23: Zeile 23:
{{Box|1=Symmetrieachse|2=
{{Box|1=Symmetrieachse|2=
In unserem alltäglichen Leben gibt es einige Gegenstände, die besondere Eigenschaften aufweisen.Hier siehst du einige Beispiele dafür. Erkennst du die Besonderheiten?
In unserem alltäglichen Leben gibt es einige Gegenstände, die besondere Eigenschaften aufweisen.Hier siehst du einige Beispiele dafür. Erkennst du die Besonderheiten?
 
<gallery mode="packed">
[[Bild:Schmetterling1.jpg|300px]] [[Bild:Blatt.jpg|250px]] [[Bild:Residenz.jpg|290px]] [[Bild:Verkehrszeichen.jpg|200px]]
[[Bild:Schmetterling1.jpg|300px]] [[Bild:Blatt.jpg|250px]] [[Bild:Residenz.jpg|290px]] [[Bild:Verkehrszeichen.jpg|200px]]
 
</gallery>


{{Lösung versteckt|
{{Lösung versteckt|

Version vom 19. November 2018, 23:48 Uhr

Achsensymmetrische Vierecke und Dreiecke
Blatt.jpg

In diesem Lernpfad wollen wir achsensymmetrische Vierecke und Dreicke kennenlernen. Dazu wollen wir als erstes nochmal wiederholen, was sich hinter dem Begriff der Achsensymmtrie verbirgt.

Notiere alle Merksätze und Definitionen in dein Heft!

Zeitbedarf
45 Min.
Material
dein Heft, Stifte und ein Lineal!
Mathematik-digital


Spiegel1.jpg

1.Station: Wiederholung zur Achsensymmetrie

Kannst du dich noch an den Begriff der Achsensymmetrie erinnern? Oder wann eine Figur achsensymmetrisch ist? Nein? Dann wollen wir uns diese Begriffe zusammen erarbeiten. Vielleicht fällt dir ja dann wieder ein, was es damit auf sich hat. Also los geht´s!

Symmetrieachse

In unserem alltäglichen Leben gibt es einige Gegenstände, die besondere Eigenschaften aufweisen.Hier siehst du einige Beispiele dafür. Erkennst du die Besonderheiten?

Fallen dir noch mehr Gegenstände aus dem Alltag ein, die symmetrisch sind? Schreibe sie in deinem Heft auf!

Was heißt achsensymmetrisch und kongruent?
Spiegel2.jpg
  • Eine Figur heißt achsensymmetrisch, falls man sie in zwei Teile zerlegen kann und diese sich exakt überdecken.
  • Die beiden Hälften sind dann kongruent zueinander.
  • Die Gerade durch die die Figur geteilt wird, heißt Symmetrieachse.
  • Die Symmetrieachse kann dabei waagrecht, senkrecht oder diagonal durch die Figur verlaufen.
  • Es kann auch mehr als eine Symmetriachse geben!

Ordne zu!

Zuordnung

Ordne die Bilder den richtigen Eigenschaften zu. Dazu musst du die Flaggen mit der linken Maustaste ziehen und fallen lassen, wenn der Hintergrund rot wird.

Übertrage anschließend je zwei Flaggen mit einer und zwei Symmetrieachsen in dein Heft und zeichne die Symmetriachsen ein!

vier Symmetrieachsen

eine Symmetrieachse

zwei Symmetrieachsen

keine Symmetrieachse

Deutschlandflagge.gifBelgien.gifJamaika.gifÖsterreich.gifGriechenland.gifUSA.gifTschecien.gifNorwegen.gifMazedonien.gifSchweiz.gif

Konntest du alle Flaggen richtig zuordnen? Prima! Dann können wir ja zur nächsten Aufgabe gehen.

Zeichne achsensymmetrische Figuren

Übertrage die drei Figuren in dein Heft und erweitere sie zu einer achsensymmetrischen Figur!

Hausvervollst.png Stern vervollst.png Figur.png

Hier findest du die Lösung!

Ich denke, du weißt jetzt wieder, was der Begriff der Achsensymmetrie heißt und was achsensymmetrische Figuren sind!

Spiegel3.jpg

Bevor wir mit einem neuen Thema anfangen, lernen wir noch eine 2.Definition für das Wort achsensymmetrisch kennen. Diese hängt mit der Achsenspiegelung zusammen, die wir in den beiden vorherigen Lernpfaden durchgenommen haben.

Definition Achsensymmetrische Figur
Eine Figur, die man durch eine Achsenspiegelung auf sich selbst abbilden kann, heißt achsensymmetrisch.

2.Station: Achsensymmetrische Vierecke

Finde achsensymmetrische Vierecke
In dieser Aufgabe musst du herausfinden, welche Vierecke achsensymmetrisch sind. Es befinden sich fünf Vierecke im Such-Rätsel. Wenn du dich an Aufgabe 2 erinnerst, fallen dir vielleicht schon zwei Vierecke ein, die du bereits kennst. Viel Spaß beim Suchen!

Finde die Wörter! (Waagrecht (von links nach rechts), senkrecht (von oben nach unten) und diagonal (von links unten nach rechts oben oder von oben links nach unten rechts), gefundene Wörter werden grün markiert)

RFUTPQWGDW
CETDRACHEN
UUCQAABSLW
NEUHUTPHBI
SSGDTAJEKD
XHSZEEDWZY
NOPYADCRSZ
TBGASOIKAA
NRMBFVAKKT

Hast du alle Vierecke gefunden? Falls du nicht auf alle gekommen bist, findest du hier die Lösung.

Wieviele Symmetrieachsen?

In dieser Aufgabe wollen wir herausfinden, wieviel Symmetrieachsen jedes der Vierecke hat.

Ordne den Vierecken ihren Namen und das Bild ihrer Symmetrieachsen zu. Dazu musst du die Bilder mit der linken Maustaste ziehen und fallenlassen, wenn der Hintergrund rot wird. Viel Spaß!

Zuordnung

Drachen.png

Trapez.png

Raute1.png

Rechteck.png

Quadrat.png

RauteQuadratO.pngTrapezO.pngDrachenQuadratRauteO.pngDrachenO.pngRechteckO.pngTrapezRechteck


Überprüfe, ob du alle Symmetrieachsen gefunden hast.

Achsensymmetrische Vierecke:
Spiegel2.jpg

Es gibt fünf achsensymmetrische Vierecke: das Quadrat, das Rechteck, die Raute, den Drachen und das gleichschenklige Trapez.
Dabei besitzen Drachen und Trapez jeweils eine Symmetrieachse, das Rechteck und die Raute zwei und das Quadrat sogar vier.
Man kann die Vierecke durch die Lage ihrer Symmetrieachsen unterscheiden. Dabei gibt es zwei Fälle.

  • 1. Fall: Die Symmetrieachse verläuft durch die gegenüberliegenden Eckpunkte des Vierecks (Drachen, Raute).
  • 2. Fall: Die Symmetrieachse geht durch die Mittelpunkte gegenüberliegender, paralleler Seiten eines Vierecks (Rechteck, Trapez).
  • Beim Quadrat trifft sowohl Fall 1, als auch Fall 2 zu.


Test

Du kennst jetzt alle achsensymmetrsichen Vierecke und weißt, wieviele Symmetrieachsen sie haben. Kannst du auch folgende Fragen dazu richtig beantworten? Dabei können auch mehrere Antwortmöglichkeiten richtig sein.

Die Raute hat ...?

Bei welchem Viereck stehen die Symmetrieachsen senkrecht aufeinander?

Welche Vierecke haben mehr als eine Symmetrieachse?

Bei welchem Viereck verlaufen die Symmetrieachsen durch die Seitenmitten?

Welches Viereck hat vier gleich lange Seiten?

Hast du alle Fragen richtig beantwortet? Dann geht´s jetzt zur nächsten Station.

Spiegel4.jpg


3.Station: Achsensymmetrische Dreiecke

Es gibt zwei achsensymmetrische Dreiecke. Mal sehen, ob du herausfindest, wie sie heißen.

Erzeuge ein achsensymmetrische Dreieck

Ziehe am Punkt C. Wann wird das Dreieck achsensymmetrisch? Wieviele Symmetrieachsen hat das Dreieck?

GeoGebra

Versuche die Fragen richtig zu beantworten! Klicke dabei entweder auf Richtig oder Falsch!

1 Die Symmetrieachse muss durch einen Eckpunkt des Dreiecks gehen?

Richtig
Falsch

2 Das Dreieck wird durch eine Symmetrieachse halbiert?

Richtig
Falsch

3 Die Winkel am Punkt A und B müssen unterschiedlich groß sein, damit das Dreieck achsensymmetrisch wird!

Richtig
Falsch

4 Zwei Seiten im Dreieck müssen gleich lang sein?

Richtig
Falsch

5 Das Dreieck hat genau zwei Symmetrieachsen.

Richtig
Falsch


Na kannst du dir denken, wie dieses Dreick heißt?

Hier der Merksatz:

Gleichschenkliges Dreieck:
  • Ein achsensymmetrisches Dreieck besitzt zwei gleich lange Seiten. Sie werden Schenkel des Dreiecks genannt.
    Gleichschenklig.png
  • Daher nennt man solch ein Dreieck gleichschenkliges Dreieck.
  • Die dritte Seite des Dreiecks wird als Grundlinie oder Basis bezeichnet.
  • Außerdem sind die beiden Winkel an der Basis gleich groß. Sie heißen daher Basiswinkel.
  • Die Symmetrieachse des Dreiecks geht durch den Eckpunkt, welcher der Basis gegenüberliegt.
  • Dieser Eckpunkt ist ein Fixpunkt.
  • Das Dreieck wird durch die Symmetrieachse halbiert. Dabei wird je ein Schenkel auf den zweiten abgebildet und umgekehrt.


Vierecke in Dreiecke zerlegen

Alle achsensymmetrischen Vierecke können durch ihre Diagonalen in gleichschenklige Dreiecke zerlegt werden. Zeichne dir die Vierecke und die Teildreicke in dein Heft. Zähle dann wieviel Dreiecke du in jedem Viereck entdeckst!

Gleichseitiges Dreieck

Es gibt noch ein achsensymmetrisches Dreieck. Dabei handelt es sich um einen Spezialfall des gleichschenkligen Dreiecks.

Gleichseitig.png


Finde die unverdrehte Lösung zu den verdrehten Wörtern! Achte dabei auf Rechtschreibfehler.

Bei diesem Dreieck sind alle Seiten gleich lang. Es wird daher Dreieck genannt.

Dabei können je zwei Seiten des Dreiecks die sein. Im gleichseitigen Dreick gibt es daher drei .

Außerdem sind alle drei gleich groß. Aus der Innenwinkelsumme im Dreieck folgt, dass die Winkel das Maß 60° besitzen.

Konntest du zu allen Wörtern die richtige Lösug finden? Dann weißt du ja jetzt, wie das Dreieck heißt. Super!

Hier findest du den Merksatz:

Gleichseitiges Dreieck:
  • Ein Spezialfall des gleichschenkligen Dreiecks ist das gleichseitige Dreieck.
    Gleichseitig1.png
  • Bei diesem Dreieck sind alle drei Seiten gleich lang.
  • Es können je zwei Seiten des Dreiecks die Schenkel sein, daher hat dieses Dreieck drei Symmetrieachsen.
  • Ein gleichseitiges Dreieck hat außerdem drei gleich große Winkel.
  • Aufgrund der Innenwinkelsumme des Dreiecks ergibt sich für jeden Winkel das Maß 60°.


4.Station: Übungen

Memory

Hier gibts nochmal ein Memory. Es gehören immer drei Kärtchen zusammen. Folgende Kategorien sind zu finden:

  • achsensymmetrische Verkehrsschilder
  • nicht achsensymmetrische Verkehrsschilder
  • achsensymmetrische Automarken
  • nicht achsensymmetrische Automarken
  • achsensymmetrische Gegenstände aus dem Alltag

Seat.jpgMazda.jpgFiat.jpgHalteverbot.jpgHalteverbot2.jpgSkoda1.jpgFussmatte1.jpgAchtung.jpgZebrastreifen1.jpgMercedes1.jpgGulli.jpgRenault.jpgPfeilR.jpgAhorn.jpgSackgasse.jpg


Kreuze an!

Kreuze die richtige Antwort an. Es können auch mehrere Kästchen richtig sein.

Quadrat Drachen Raute Rechteck Trapez gleichschenkliges Dreieck gleichseitiges Dreieck
Welche der Figuren hat keine Diagonalen?
Welche der Figuren besitzt rechte Winkel?
Bei welchen Figuren stehen die Symmetrieachsen senkrecht aufeinander?
Bei welchen Figuren verläuft die Symmetrieachse durch mind. einen Eckpunkt?
Welche Figur hat mehr als zwei gleich große Winkel?
Welche Figur besitzt nur eine Symmetrieachse und welche hat die meisten Symmetrieachsen?

Zusatzaufgabe

Du kennst bereits achsensymmetrische Dreiecke und Vierecke und deren Symmetrieachsen. Aber wieviel Symmetrieachsen hat eigentlich ein Kreis?

KreisS1.png


Spiegel9.jpg