Quadratische Funktionen erkunden/Von der Scheitelpunkt- zur Normalform: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 202: | Zeile 202: | ||
Das folgende Applet kannst du nutzen, um deine Ergebnisse aus Aufgabe 1 zu kontrollieren. Außerdem kannst du mit den Parametern beider Darstellungsformen experimentieren und zum Beispiel untersuchen, wie du die Parameterwerte verändern musst, um beide Graphen an einer beliebigen Stelle im Koordinatensystem übereinander zu legen. | Das folgende Applet kannst du nutzen, um deine Ergebnisse aus Aufgabe 1 zu kontrollieren. Außerdem kannst du mit den Parametern beider Darstellungsformen experimentieren und zum Beispiel untersuchen, wie du die Parameterwerte verändern musst, um beide Graphen an einer beliebigen Stelle im Koordinatensystem übereinander zu legen. | ||
< | <ggb_applet id="R9CvVq59" width="800" height="570" border="888888" /> | ||
=='''Erklärvideo'''== | =='''Erklärvideo'''== | ||
Zeile 238: | Zeile 237: | ||
Nutze das GeoGebra-Applet um deine eigene Lösung zu kontrollieren: | Nutze das GeoGebra-Applet um deine eigene Lösung zu kontrollieren: | ||
< | <ggb_applet id="DRDCQZvn" width="700" height="500" border="888888" /> | ||
=='''Merksätze'''== | =='''Merksätze'''== |
Version vom 7. April 2018, 12:30 Uhr
Beispiel
Für den Basketballwurf konnten näherungsweise diese beiden Funktionsterme gefunden werden:
Die Funktionsterme müssen irgendwie ineinander überführbar sein, da sie die gleiche Parabel beschreiben.
Durch Ausmultiplikation der Scheitelpunktform erhalten wir:
Funktionsterm | Schritt-für-Schritt-Anleitung |
Klammer auflösen | |
innere Klammer ausmultiplizieren | |
Klammer ausmultiplizieren | |
Zusammenfassen | |
Ein Blick auf das zweite Bild oben zeigt, dass das Ergebnis der Ausmultiplikation genau der Term in Normalform ist.
|}
Das folgende Applet kannst du nutzen, um deine Ergebnisse aus Aufgabe 1 zu kontrollieren. Außerdem kannst du mit den Parametern beider Darstellungsformen experimentieren und zum Beispiel untersuchen, wie du die Parameterwerte verändern musst, um beide Graphen an einer beliebigen Stelle im Koordinatensystem übereinander zu legen.
Erklärvideo
Daniel Jung hat auf Youtube in seinem Channel Mathe by Daniel Jung zu den verschiedensten Themen Erklärvideos erstellt.
Falls dir die Umformung von der Scheitelpunkt- auf die Normalform schwer fiel, kannst du dir hier ein Video dazu anschauen und es dann noch einmal probieren. Denke daran dir Kopfhörer anzuziehen, sofern du nicht alleine in einem Raum bist.
Achtung: Parameter c Parameter e
Nutze das GeoGebra-Applet um deine eigene Lösung zu kontrollieren:
Merksätze
Quadratische Funktionen können auf verschiedene Weisen in Termen dargestellt werden. Die beiden Formen, die du bisher kennengelernt hast, heißen
Eine Parabel kann immer in beiden Darstellungsformen beschrieben werden.
Erstellt von: Elena Jedtke (Diskussion)