Quadratische Funktionen erkunden/Die Parameter der Normalform: Unterschied zwischen den Versionen
Main>Elena Jedtke K (Seitenzahl) |
Main>Elena Jedtke KKeine Bearbeitungszusammenfassung |
||
Zeile 22: | Zeile 22: | ||
{{Aufgaben|1|'''Für diese Aufgabe benötigst du deinen Hefter (S. | {{Aufgaben|1|'''Für diese Aufgabe benötigst du deinen Hefter (S. 4) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]]. | ||
Zeile 33: | Zeile 33: | ||
<popup name="Hilfe">Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die drei Funktionen aufstellen und die Funktionswerte mit den Werten von <math>y=x^2</math> vergleichen.</popup> | <popup name="Hilfe">Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die drei Funktionen aufstellen und die Funktionswerte mit den Werten von <math>y=x^2</math> vergleichen.</popup> | ||
'''b)''' Zeichne die drei Graphen und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?}} | '''b)''' Zeichne die drei Graphen in ein Koordinatensystem und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?}} | ||
Zeile 71: | Zeile 71: | ||
=='''Der Parameter b'''== | =='''Der Parameter b'''== | ||
{{Aufgaben|4|'''Für diese Aufgabe benötigst du deinen Hefter (S. | {{Aufgaben|4|'''Für diese Aufgabe benötigst du deinen Hefter (S. 10) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]]. | ||
Zeile 82: | Zeile 82: | ||
<popup name="Hilfe">Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die Funktionen aufstellen und die Funktionswerte mit den Werten von <math>y=x^2</math> vergleichen.</popup> | <popup name="Hilfe">Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die Funktionen aufstellen und die Funktionswerte mit den Werten von <math>y=x^2</math> vergleichen.</popup> | ||
'''b)''' Zeichne die zwei Graphen und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?}} | '''b)''' Zeichne die zwei Graphen in ein Koordinatensystem und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?}} | ||
Zeile 92: | Zeile 92: | ||
{{Aufgaben|5|'''Für diese Aufgabe benötigst du deinen Hefter (S. | {{Aufgaben|5|'''Für diese Aufgabe benötigst du deinen Hefter (S. 11) und einen Partner''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]] [[Datei:Puzzle-1020221 640.jpg|125px|rahmenlos|Partnerarbeit]]. | ||
'''a)''' | '''a)''' | ||
Zeile 126: | Zeile 126: | ||
=='''Der Parameter c'''== | =='''Der Parameter c'''== | ||
{{Aufgaben|6|'''Für diese Aufgabe benötigst du deinen Hefter (S. | {{Aufgaben|6|'''Für diese Aufgabe benötigst du deinen Hefter (S. 11) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]]. | ||
Zeile 137: | Zeile 137: | ||
<popup name="Hilfe">Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die Funktionen aufstellen und die Funktionswerte mit den Werten von <math>y=x^2</math> vergleichen.</popup> | <popup name="Hilfe">Wenn du dir unsicher bei der Formulierung deiner Vermutungen bist, kannst du Wertetabellen für die Funktionen aufstellen und die Funktionswerte mit den Werten von <math>y=x^2</math> vergleichen.</popup> | ||
'''b)''' Zeichne die zwei Graphen und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?}} | '''b)''' Zeichne die zwei Graphen in ein Koordinatensystem und überprüfe deine Vermutungen aus Aufgabenteil a). Welche deiner Vermutungen treffen zu? Welche kannst du mit Hilfe der Funktionsgraphen korrigieren?}} | ||
Zeile 167: | Zeile 167: | ||
{{Aufgaben|8| | {{Aufgaben|8| | ||
'''Für diese Aufgabe benötigst du deinen Hefter (Merkliste) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]]. | '''Für diese Aufgabe benötigst du deinen Hefter (Merkliste, S. 4) [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]]. | ||
Notiere die folgenden Merksätze in deine Merkliste und ergänze sie durch Beispiele, die dir die Aussagen veranschaulichen. | Notiere die folgenden Merksätze in deine Merkliste und ergänze sie durch Beispiele, die dir die Aussagen veranschaulichen. |
Version vom 16. August 2017, 15:03 Uhr
In diesem Kapitel stellen sich die Paramter der Normalform quadratischer Funktionen vor. Du kannst herausfinden,
|
Strecken, Stauchen und Spiegeln
In dem Applet ist die Normalparabel , die du auf der Seite Quadratische Funktionen kennenlernen erkundet hast, eingezeichnet. Du kannst den Schieberegler a betätigen und dadurch den Graph verändern. Was passiert?
In dem folgenden Lückentext werden die Erkenntnisse, die du aus Aufgabe 1 mitnehmen konntest, noch einmal ausformuliert. Füge die fehlenden Begriffe und Zahlen in die Lücken.
Knobelaufgabe
Multipliziert man mit einem Faktor a, wird die Parabel gestreckt, gestaucht und/oder gespiegelt. (mit a≠0) ergibt demnach für:
a > 0: Die Parabel ist nach oben geöffnet.
a < 0: Die Parabel ist nach unten geöffnet.
a < -1 bzw. a > 1: Die Parabel ist gestreckt.
-1 < a < 1: Die Parabel ist gestaucht.
Der Parameter a wird auch Streckungsfaktor genannt.
Der Parameter b
In dem Applet ist die Normalparabel , die du auf der Seite Quadratische Funktionen kennenlernen erkundet hast, eingezeichnet. Du kannst den Schieberegler b betätigen und dadurch den Graph verändern. Was passiert?
Addiert man den Ausdruck zu , wird die Parabel sowohl in x- als auch in y-Richtung verschoben. Für gilt:
Für a>0:
b>0: Die Parabel wird nach links und unten verschoben.
b<0: Die Parabel wird nach rechts und unten verschoben.
Für a<0:
b>0: Die Parabel wird nach rechts und oben verschoben.
b<0: Die Parabel wird nach links und oben verschoben.
Der Parameter c
In dem Applet ist die Normalparabel , die du auf der Seite Quadratische Funktionen kennenlernen erkundet hast, eingezeichnet. Du kannst die Schieberegler a, b und c betätigen und dadurch den Graph verändern. Was passiert?
Der Parameter c bewirkt eine Verschiebung der Parabel in y-Richtung. Er gibt dabei den y-Achsenabschnitt der Parabel an. Es gilt für:
c>0: Die Parabel wird nach oben verschoben.
c<0: Die Parabel wird nach unten verschoben.
Zusammenfassung der wichtigsten Inhalte
Multipliziert man mit einem Faktor a, wird die Parabel gestreckt, gestaucht und/oder gespiegelt. (mit a≠0) ergibt demnach für:
a > 0: Die Parabel ist nach oben geöffnet.
a < 0: Die Parabel ist nach unten geöffnet.
a < -1 bzw. a > 1: Die Parabel ist gestreckt.
-1 < a < 1: Die Parabel ist gestaucht.
Der Parameter a wird auch Streckungsfaktor genannt.
Addiert man den Ausdruck zu , wird die Parabel sowohl in x- als auch in y-Richtung verschoben. Für gilt:
Für a>0:
b>0: Die Parabel wird nach links und unten verschoben.
b<0: Die Parabel wird nach rechts und unten verschoben.
Für a<0:
b>0: Die Parabel wird nach rechts und oben verschoben.
b<0: Die Parabel wird nach links und oben verschoben.
Der Parameter c bewirkt eine Verschiebung der Parabel in y-Richtung. Er gibt dabei den y-Achsenabschnitt der Parabel an. Es gilt für:
c>0: Die Parabel wird nach oben verschoben.
c<0: Die Parabel wird nach unten verschoben.
Die auf dieser Seite gewonnen Erkenntnisse können kombiniert werden und ergeben quadratische Funktion der Form . Diese Form heißt Normalform.
Auf der nächsten Seite lernst du diese Variante quadratischer Funktionen genauer kennen. Außerdem befinden sich noch weitere Übungsaufgaben in dem Kapitel Übungen.
Erstellt von: Elena Jedtke (Diskussion)