Quadratische Funktionen erkunden/Die Scheitelpunktform: Unterschied zwischen den Versionen
Aus ZUM-Unterrichten
Main>Elena Jedtke K (3c weg) |
Main>Elena Jedtke K (Aufgaben und Seitenzahlen angepasst) |
||
Zeile 11: | Zeile 11: | ||
{{Aufgaben|1|'''Für diese Aufgabe benötigst du deinen Hefter (S. | {{Aufgaben|1|'''Für diese Aufgabe benötigst du deinen Hefter (S. 9)''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]]. | ||
Finde Werte für a, d und e, so dass <math>f(x)</math> die Kurve auf dem Bild möglichst gut beschreibt. Entscheide dich für drei Hintergrundbilder deiner Wahl und notiere den Funktionsterm in deinem Hefter. Wenn du noch weiter arbeiten möchtest, kannst du auch einige der übrigen Hintergundbilder bearbeiten. | Finde Werte für a, d und e, so dass <math>f(x)</math> die Kurve auf dem Bild möglichst gut beschreibt. Entscheide dich für drei Hintergrundbilder deiner Wahl und notiere den Funktionsterm in deinem Hefter. Wenn du noch weiter arbeiten möchtest, kannst du auch einige der übrigen Hintergundbilder bearbeiten. | ||
Zeile 44: | Zeile 44: | ||
{{Aufgaben|2|'''Für diese Aufgabe benötigst du deinen Hefter (Merkliste)''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]]. | {{Aufgaben|2|'''Für diese Aufgabe benötigst du deinen Hefter (Merkliste, S. 3)''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]]. | ||
Denke dir eine quadratische Funktion in Scheitelpunktform aus. Notiere den Term und fertige eine Skizze des Funktionsgraphen im Koordinatensystem an. Zur Kontrolle kannst du das oben stehende GeoGebra-Applet nutzen.}}<br /> | |||
{{Merke|1= Terme quadratischer Funktionen können in der Form <math>y=a(x-d)^2+e</math> angegeben werden (wobei a ≠ 0). Diese Darstellungsform nennt man '''Scheitelpunktform''', da sich direkt aus dem Term der Scheitelpunkt ablesen lässt. Er hat die Koordinaten <math>S(d/e)</math>. }} | {{Merke|1= Terme quadratischer Funktionen können in der Form <math>y=a(x-d)^2+e</math> angegeben werden (wobei a ≠ 0). Diese Darstellungsform nennt man '''Scheitelpunktform''', da sich direkt aus dem Term der Scheitelpunkt ablesen lässt. Er hat die Koordinaten <math>S(d/e)</math>. }} | ||
{{Aufgaben|3| | {{Aufgaben|3| | ||
Das folgende Quiz beschäftigt sich mit dem Wechsel zwischen verschiedenen Darstellungsarten (Funktionsterm, Graph und Situationen) quadratischer Funktionen. Hier kannst du dir für die drei Darstellungsarten zum Thema Basketball ein Beispiel anzeigen lassen. | Das folgende Quiz beschäftigt sich mit dem Wechsel zwischen verschiedenen Darstellungsarten (Funktionsterm, Graph und Situationen) quadratischer Funktionen. Hier kannst du dir für die drei Darstellungsarten zum Thema Basketball ein Beispiel anzeigen lassen. | ||
Zeile 67: | Zeile 67: | ||
{{Aufgaben|4|'''Für diese Aufgabe benötigst du deinen Hefter (S. | {{Aufgaben|4|'''Für diese Aufgabe benötigst du deinen Hefter (S. 9) und einen Partner''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]] [[Datei:Puzzle-1020221 640.jpg|125px|rahmenlos|Partnerarbeit]]. | ||
'''a)''' Überlege dir - ohne deinem Partner zu verraten - eine Sportart, bei der die Flugkurve eines Balls (oder eines ähnlichen Sportutensils) durch eine quadratische Funktion näherungsweise modelliert werden kann. Notiere den Term (sowie die Maßeinheit) in deinem Hefter. Zur Visualisierung kannst du das untenstehende GeoGebra-Applet nutzen. | '''a)''' Überlege dir - ohne deinem Partner zu verraten - eine Sportart, bei der die Flugkurve eines Balls (oder eines ähnlichen Sportutensils) durch eine quadratische Funktion näherungsweise modelliert werden kann. Notiere den Term (sowie die Maßeinheit) in deinem Hefter. Zur Visualisierung kannst du das untenstehende GeoGebra-Applet nutzen. |
Version vom 16. August 2017, 15:00 Uhr
In diesem Kapitel des Lernpfads wirst du Experte für die Scheitelpunktform quadratischer Funktionen. Du kannst 1. selbstständig mithilfe der vorliegenden Applets reale Flugkurven, Gebäude oder Phänomene aus der Natur modellieren, |
Aufgabe 1
- ! Hintergrundbild!! Lösungsvorschlag !! Parameter a !! Parameter d !! Parameter e
Aufgabe 2
Merke
Terme quadratischer Funktionen können in der Form angegeben werden (wobei a ≠ 0). Diese Darstellungsform nennt man Scheitelpunktform, da sich direkt aus dem Term der Scheitelpunkt ablesen lässt. Er hat die Koordinaten .
Aufgabe 3
{{{2}}}
Aufgabe 4
{{{2}}}
Erstellt von: --Carsten (Diskussion) 15:24, 5. Nov. 2016 (CET)
Bearbeitet von: Elena Jedtke (Diskussion)