Quadratische Funktionen erkunden/Übungen: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Elena Jedtke
(Übung "Modellieren" überarbeitet)
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(81 dazwischenliegende Versionen von 7 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
{{Quadratische Funktionen erkunden}}
{{Navigation verstecken|{{Quadratische Funktionen erkunden}}|Lernschritte einblenden|Lernschritte ausblenden}}


==Übungsaufgaben Parameter==
{{Box
{{Übung|'''Für diese Aufgabe benötigst du deinen Hefter [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
|
|In diesem Kapitel des Lernpfads findest du Übungsaufgaben zu allen Inhalten, die du in den vorherigen Abschnitten kennengelernt hast. Sie sollen dir helfen, dein Wissen zu festigen. Klicke im Inhaltsverzeichnis einfach auf das Thema, zu dem du Übungsaufgaben bearbeiten möchtest.


In dieser Aufgabe werden die Parameter kombiniert, die du in dem Kapitel [[Quadratische Funktionen erkunden/Die Parameter der Scheitelpunktform|Die Parameter der Scheitelpunktform]] kennengelernt hast.


'''Hinweis:''' Du musst nicht alle Aufgaben dieser Seite bearbeiten. Suche dir gezielt Aufgaben zum Üben heraus.
|Kurzinfo
}}
==Parameter==
===Die Parameter der Scheitelpunktform===
{{Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 17) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
Zeichne die Graphen der folgenden Funktionen:
'''a)''' <math>y=2 \cdot x^2</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'''b)''' <math>y=0,5 \cdot x^2</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'''c)''' <math>y=-x^2</math>
'''d)''' <math>y=(x-2)^2</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'''e)''' <math>y=(x+2)^2</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'''f)''' <math>y=x^2+3</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'''g)''' <math>y=x^2-3</math>
{{Lösung versteckt|Schaue dir die Merksätze zu den Parametern <math>a, d</math> und <math>e</math> in deinem Hefter noch einmal an. Dadurch kannst du herausfinden wie die Parabel, die du zeichnen möchtest aussehen muss.
Ermittle einzelne Punkte oder lege eine Wertetabelle an, um die Parabeln zu zeichnen.|Hilfe anzeigen|Hilfe verbergen}}
{{Lösung versteckt|Gib für die Parameter <math>a, d</math> und <math>e</math> die Werte im Applet an, so dass g(x) einem der Funktionsterme (a)-(g) gleicht. Vergleiche zur Kontrolle die Parabel im Applet mit deiner gezeichneten Parabel.
<ggb_applet id="cSvseGhd" width="700" height="500" />
|Lösung anzeigen|Lösung verbergen}}}}
{{Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 18) [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
In dieser Aufgabe werden die Parameter kombiniert, die du in dem Kapitel [[Mathematik-digital/Quadratische Funktionen erkunden/Die Parameter der Scheitelpunktform|Die Parameter der Scheitelpunktform]] kennengelernt hast.
Gegeben ist die Wertetabelle:
Gegeben ist die Wertetabelle:


[[Datei:Tabelle Übung1.PNG|rahmenlos|zentriert|750px|Übung zu Parametern]]
[[Datei:Tabelle Übung1.PNG|rahmenlos|750px|Übung zu Parametern]]
 
'''a)''' Zeichne die Graphen zu den Funktionen ''f''(x), ''g''(x) und ''h''(x) in das Koordinatensystem in deinem Hefter. Nicht alle y-Werte können sinnvoll in den Ausschnitt, der in dem Koordinatensystem gezeigt wird, eingetragen werden.
{{Lösung versteckt|[[Datei:Lösung zu Übung1.PNG|rahmenlos|750px|Lösung zu Tabelle Übung1]]|Lösung anzeigen|Lösung verbergen}}


'''a)''' Zeichne die Graphen zu den Funktionen ''f''(x), ''g''(x) und ''h''(x).
'''b)''' Bestimme die Funktionsterme in Scheitelpunktform.
<popup name="Lösung">[[Datei:Lösung zu Übung1.PNG|rahmenlos|Lösung zu Tabelle Übung1]]</popup>
{{Lösung versteckt|1=Ist der Graph gestreckt, gestaucht und/oder gespiegelt? Durch die Beantwortung dieser Frage kannst du den Wert des Parameters <math>a</math> eingrenzen. Anschließend findest du den genauen Wert zum Beispiel durch systematisches Probieren und Abgleichen mit den gegebenen Funktionswerten in der Tabelle.


'''b)''' Bestimme die Funktionsterme.
Lies den Scheitelpunkt ab. Setze dessen Koordinaten in den Funktionsterm <math>f(x)=a(x-d)^2+e</math> ein.
|2=Hilfe anzeigen|3=Hilfe verbergen}}
{{Lösung versteckt|1=<math>f(x)=\frac{1}{5} \cdot x^2-3.5</math>


<popup name="Hilfe">Lies zunächst den Scheitelpunkt ab und setze dessen Koordinaten an den passenden Stellen des allgemeinen Funktionsterms <math>f(x)=a(x-d)^2+e</math> ein.
<math>g(x)=(x+4)^2+0.5</math>


<math>h(x)=-5(x-2)^2+10</math>|2=Lösung anzeigen|3=Lösung verbergen}}}}


Ist der Graph gestreckt, gestaucht und/oder gespiegelt? Durch die Beantwortung dieser Frage kannst du den Wert des zugehörigen Parameters eingrenzen. Anschließend findest du den genauen Wert zum Beispiel durch systematisches Probieren und abgleichen mit den gegebenen Funktionswerten.</popup>
{{Übung|In diesem Applet sind verschiedene Graphen abgebildet. Ermittle die zugehörigen Funktionsterme und trage sie in die Felder unter den jeweiligen Graphen ein.
<popup name="Lösung"><math>f(x)=1/5x^2-3.5</math>


<math>g(x)=(x+4)^2+0.5</math>
'''Hinweise:'''
::'''1. Beginne jeden Term mit <math>y=</math>'''
::'''2. Wenn du ein "hoch 2" einfügen möchtest, schreibe ^2.'''
{{LearningApp|app=p8guq0hdn17|width=100%|height=600px}}
{{Lösung versteckt|[[Datei:Lösung Applet Finde den Term.PNG|rahmenlos|800px|Lösung zu Applet]]}}
|3=Üben}}
 
{{Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S.19)''' [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
Vervollständige die Tabelle:
 
[[Datei:Übung Lagebeschreibung.PNG|rahmenlos|750px|Übungsaufgabe]]
{{Lösung versteckt|[[Datei:Übung Lagebeschreibung Lsg.PNG|rahmenlos|750px|Lösungsvorschlag]]}}
}}
 
===Die Parameter der Normalform===
 
{{Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 19)''' [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
Zwei Parabeln sollen den gleichen y-Achsenabschnitt c haben. Gib je zwei Funktionsterme in Normalform an.
 
'''a)''' <math>c=1</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'''b)''' <math>c=-2,5</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'''c)''' <math>c=-4</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'''d)''' <math>c=\frac{3}{5}</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'''e)''' <math>c=0</math>
 
{{Lösung versteckt|1=Deine Terme können ganz anders aussehen, als die Terme hier in den Lösungsvorschlägen. Wichtig ist, dass deine zwei Terme jeweils den gleichen y-Achsenabschnitt <math>c</math> wie angegeben haben. Die Parameter <math>a</math> und <math>b</math> können dann beliebig variiert werden.


<math>h(x)=-5(x-2)^2+10</math></popup>}}
{{{!}} class="wikitable"
{{!}}-
{{!}}'''a)'''{{!}}{{!}}&nbsp;&nbsp;&nbsp;<math>y=x^2+2x+1</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;{{!}}{{!}}&nbsp;&nbsp;&nbsp;'''b)'''{{!}}{{!}}&nbsp;&nbsp;&nbsp;<math>y=-x^2+2x-2,5</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;{{!}}{{!}}&nbsp;&nbsp;&nbsp;'''c)'''{{!}}{{!}}&nbsp;&nbsp;&nbsp;<math>y=2x^2-2x-4</math>
{{!}}-
{{!}}&nbsp;&nbsp;&nbsp;{{!}}{{!}}&nbsp;&nbsp;&nbsp;<math>y=2x^2+2x+1</math>&nbsp;&nbsp;&nbsp;&nbsp;{{!}}{{!}}&nbsp;&nbsp;&nbsp;{{!}}{{!}}&nbsp;&nbsp;&nbsp;<math>y=x^2-x-2,5</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;{{!}}{{!}}&nbsp;&nbsp;&nbsp;<math>y=2x^2-3x-4</math>
{{!}}}


{{{!}} class="wikitable"
{{!}}-
{{!}}'''d)'''{{!}}{{!}}&nbsp;&nbsp;&nbsp;<math>y=-x^2+x+\frac{3}{5}</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;{{!}}{{!}}&nbsp;&nbsp;&nbsp;'''e)'''{{!}}{{!}}&nbsp;&nbsp;&nbsp;<math>y=-x^2+x</math>
{{!}}-
{{!}}&nbsp;&nbsp;&nbsp;{{!}}{{!}}&nbsp;&nbsp;&nbsp;<math>y=-x^2+5x+\frac{3}{5}</math>&nbsp;&nbsp;&nbsp;&nbsp;{{!}}{{!}}&nbsp;&nbsp;&nbsp;{{!}}{{!}}&nbsp;&nbsp;&nbsp;<math>y=x^2-x</math>
{{!}}}|2=Lösung anzeigen|3=Lösung verbergen}}|Arbeitsmethode
}}


{{Übung|
{{Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 20) und einen Partner''' [[Datei:Notepad-117597.svg|32x32px]][[Datei:Puzzle-1020221_640.jpg|rahmenlos|80x80px]].
<iframe src="//LearningApps.org/watch?v=p8guq0hdn17" style="border:0px;width:70%;height:500px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
<popup name="Lösung">[[Datei:Lösung Applet Finde den Term.PNG|rahmenlos|750px|Lösung zu Applet]]</popup>}}


'''a)''' Denke dir drei Funktionsterme in Normalform aus.
{{Lösung versteckt|1=Terme in Normalform quadratischer Funktionen sehen allgemein so aus: <math>y=ax^2+bx+c</math>.
Denke dir Werte für die Parameter <math>a, b</math> und <math>c</math> aus und setze sie ein.


{{Übung|'''Für diese Aufgabe benötigst du deinen Hefter''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
'''Beispiel:''' Für <math>a=1</math>, <math>b=1</math> und <math>c=-4</math> erhält man: <math>y=1\cdot x^2+1\cdot x-4</math>.|2=Hilfe anzeigen|3=Hilfe verbergen}}
'''b)''' Gib deinem Partner deine Funktionsterme und nimm dafür seine. Zeichnet die Graphen zu den Termen.
{{Lösung versteckt|Zur Kontrolle kannst du das unten stehende '''GeoGebra-Applet''' benutzen. Gib die Parameter der Funktionsterme ein und vergleiche deinen Graph mit dem Ergebnis im Applet.|Lösung anzeigen|Lösung verbergen}}


Vervollständige die Tabelle:
'''c)''' Vergleicht eure Ergebnisse und erklärt Schritt-für-Schritt wie ihr die Graphen erstellt habt. Notiert eine gemeinsame Schritt-für-Schritt-Anleitung in euren Hefter.
{{Lösung versteckt
|Eine Anleitung kann wie folgt aussehen.
#y-Achsenabschnitt P(0;c) ablesen.
#Verschiedene x-Werte in den Term einsetzen und so die zugehörigen y-Werte bestimmen (Erstellen einer Tabelle).
#Koordinatensystem zeichnen und Punkte eintragen.
#Punkte zu einer Parabel verbinden.|Lösung anzeigen|Lösung verbergen}}}}


[[Datei:Übung Lagebeschreibung.PNG|rahmenlos|zentriert|750px|Übungsaufgabe]]
<ggb_applet id="GBnam42z" width="750" height="499" border="888888" />


<popup name="Lösungsvorschlag">[[Datei:Übung Lagebeschreibung Lsg.PNG|rahmenlos|zentriert|750px|Lösungsvorschlag]]</popup>}}
===Allgemeine Übungen zu Parametern===


{{Übung|Teste dein Wissen und werde Punkte-Millionär. Schaffst du es ins Finale?
{{LearningApp|app=phcsyj21c17|width=100%|height=500px}}
}}


{{Übung|'''Für diese Aufgabe benötigst du deinen Hefter und einen Partner''' [[Datei:Notepad-117597.svg|40px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]] [[Datei:Puzzle-1020221 640.jpg|125px|rahmenlos|Partnerarbeit]].
{{Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 21) und einen Partner''' [[Datei:Notepad-117597.svg|32x32px]][[Datei:Puzzle-1020221_640.jpg|rahmenlos|80x80px]].


'''a)''' Denke dir zwei Terme quadratischer Funktionen aus und notiere eine Lagebeschreibung des Graphen.  
'''a)''' Denke dir zwei Terme quadratischer Funktionen aus und notiere eine Lagebeschreibung des Graphen.  
<popup name="Beispiel">Schaue dir die Übungsaufgabe direkt über dieser an.</popup>
{{Lösung versteckt|Die Parabel ist eine an der x-Achse gespiegelte Normalparabel. Sie ist um je eine Einheit nach rechts und nach oben verschoben. Ihr Scheitelpunkt lautet <math>S(1;1)</math>.|Beispiel anzeigen|Beispiel verbergen}}


'''b)''' Tausche deine Beschreibungen (nicht den Term!) mit denen deines Partners aus und bestimme seine Funktionsterme.
'''b)''' Tausche deine Beschreibungen (nicht den Term!) mit denen deines Partners aus und bestimme seine Funktionsterme.
{{Lösung versteckt|1=Die Lösung zu dem Beispiel in Übungsteil a) lautet: <math>y=(x-1)^2+1</math>.|2=Beispiel anzeigen|3=Beispiel verbergen}}


'''c)''' Kontrolliert eure Ergebnisse gegenseitig. Habt ihr die richtigen Terme gefunden? Wenn nicht, versucht gemeinsam eure Fehler aufzudecken und zu klären.
'''c)''' Kontrolliert eure Ergebnisse gegenseitig. Habt ihr die richtigen Terme gefunden? Wenn nicht, versucht gemeinsam eure Fehler aufzudecken und zu klären.
<popup name="Hilfe">Schaut euch noch einmal die Merksätze auf der Seite [[Quadratische Funktionen erkunden/Die Parameter stellen sich vor|Die Parameter stellen sich vor]] an.</popup>}}
{{Lösung versteckt|Schaut euch noch einmal die Merksätze auf den Parameterseiten der [[Mathematik-digital/Quadratische Funktionen erkunden/Die Parameter der Normalform|Normalform]] und der [[Mathematik-digital/Quadratische Funktionen erkunden/Die Parameter der Scheitelpunktform|Scheitelpunktform]] an.|Hilfe anzeigen|Hilfe verbergen}}}}
 
 
==Von der Scheitelpunkt- zur Normalform==
 
{{Box|Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 22)''' [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
Forme die folgenden Terme in Scheitelpunktform in Normalform um:
 
<math>(1)y=(x-2)^2+3</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<math>(4)y=(x-1,5)^2-7</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<math>(7)y=(x+4)^2+2</math>
 
<math>(2)y=-(x+5)^2+25</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<math>(5)y=2(x+7)^2-35</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<math>(8)y=-3(x-6)^2</math>
 
<math>(3)y=4(x-1)^2+0,5</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<math>(6)y=(x+0,5)^2+0,75</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<math>(9)y=0,5(x-2)^2-16</math>
{{Lösung versteckt|1=
{{{!}} class="wikitable"
{{!}}-
{{!}}'''Funktionsterm (1)'''{{!}}{{!}}&nbsp;&nbsp;&nbsp;'''Schritt-für-Schritt-Anleitung'''&nbsp;&nbsp;&nbsp;&nbsp;{{!}}{{!}}'''Funktionsterm (6)'''{{!}}{{!}}&nbsp;&nbsp;&nbsp;'''Schritt-für-Schritt-Anleitung'''
{{!}}-
{{!}}<math>y=(x-2)^2+3</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Klammer auflösen&nbsp;&nbsp;&nbsp;&nbsp;{{!}}{{!}}<math>y=(x+0,5)^2+0,75</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Klammer auflösen
{{!}}-
{{!}}<math>=(x-2)(x-2)+3</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Klammer ausmultiplizieren&nbsp;&nbsp;&nbsp;&nbsp;{{!}}{{!}}<math>=(x+0,5)(x+0,5)+0,75</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Klammer ausmultiplizieren
{{!}}-
{{!}}<math>=x^2-2x-2x+4+3</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Zusammenfassen&nbsp;&nbsp;&nbsp;&nbsp;{{!}}{{!}}<math>=x^2+0,5x+0,5x+0,25+0,75</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Zusammenfassen
{{!}}-
{{!}}<math>=x^2-4x+7</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;{{!}}{{!}}<math>=x^2+x+1</math>
{{!}}}
 
{{{!}} class="wikitable"
{{!}}-
{{!}}'''Funktionsterm (2)'''{{!}}{{!}}&nbsp;&nbsp;&nbsp;'''Schritt-für-Schritt-Anleitung'''&nbsp;&nbsp;{{!}}{{!}}'''Funktionsterm (7)'''{{!}}{{!}}&nbsp;&nbsp;&nbsp;'''Schritt-für-Schritt-Anleitung'''
{{!}}-
{{!}}<math>y=-(x+5)^2+25</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Klammer auflösen&nbsp;&nbsp;{{!}}{{!}}<math>y=(x+4)^2+2</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Klammer auflösen
{{!}}-
{{!}}<math>=-((x+5)(x+5))+25</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;innere Klammer ausmultiplizieren&nbsp;&nbsp;{{!}}{{!}}<math>=(x+4)(x+4)^2+2</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Klammer ausmultiplizieren
{{!}}-
{{!}}<math>=-(x^2+5x+5x+25)+25</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Klammer ausmultiplizieren&nbsp;&nbsp;{{!}}{{!}}<math>=x^2+4x+4x+16+2</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Zusammenfassen
{{!}}-
{{!}}<math>=-x^2-10x-25+25</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Zusammenfassen&nbsp;&nbsp;{{!}}{{!}}<math>=x^2+8x+18</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
{{!}}-
{{!}}<math>=-x^2-10x</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;{{!}}{{!}}&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
{{!}}}
 
{{{!}} class="wikitable"
{{!}}-
{{!}}'''Funktionsterm (3)'''{{!}}{{!}}&nbsp;&nbsp;&nbsp;'''Schritt-für-Schritt-Anleitung'''&nbsp;&nbsp;{{!}}{{!}}'''Funktionsterm (8)'''{{!}}{{!}}&nbsp;&nbsp;&nbsp;'''Schritt-für-Schritt-Anleitung'''
{{!}}-
{{!}}<math>y=4(x-1)^2+0,5</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Klammer auflösen&nbsp;&nbsp;{{!}}{{!}}<math>y=-3(x-6)^2</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Klammer auflösen
{{!}}-
{{!}}<math>=4((x-1)(x-1))+0,5</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;innere Klammer ausmultiplizieren&nbsp;&nbsp;{{!}}{{!}}<math>=-3((x-6)(x-6))</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;innere Klammer ausmultiplizieren
{{!}}-
{{!}}<math>=4(x^2-x-x+1)+0,5</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Klammer ausmultiplizieren&nbsp;&nbsp;{{!}}{{!}}<math>=-3(x^2-6x-6x+36)</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Klammer ausmultiplizieren
{{!}}-
{{!}}<math>=4x^2-4x-4x+4+0,5</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Zusammenfassen&nbsp;&nbsp;{{!}}{{!}}<math>=-3x^2+18x+18x-108</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Zusammenfassen
{{!}}-
{{!}}<math>=4x^2-8x+4,5</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;{{!}}{{!}}<math>=-3x^2+36x-108</math>
{{!}}}
 
{{{!}} class="wikitable"
{{!}}-
{{!}}'''Funktionsterm (4)'''{{!}}{{!}}&nbsp;&nbsp;&nbsp;'''Schritt-für-Schritt-Anleitung'''&nbsp;&nbsp;&nbsp;&nbsp;{{!}}{{!}}'''Funktionsterm (9)'''{{!}}{{!}}&nbsp;&nbsp;&nbsp;'''Schritt-für-Schritt-Anleitung'''
{{!}}-
{{!}}<math>y=(x-1,5)^2-7</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Klammer auflösen&nbsp;&nbsp;&nbsp;&nbsp;{{!}}{{!}}<math>y=0,5(x-2)^2-16</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Klammer auflösen
{{!}}-
{{!}}<math>=(x-1,5)(x-1,5)-7</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Klammer ausmultiplizieren&nbsp;&nbsp;&nbsp;&nbsp;{{!}}{{!}}<math>0,5((x-2)(x-2))-16</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;innere Klammer ausmultiplizieren
{{!}}-
{{!}}<math>=x^2-1,5x-1,5x+2,25-7</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Zusammenfassen&nbsp;&nbsp;&nbsp;&nbsp;{{!}}{{!}}<math>=0,5(x^2-2x-2x+4)-16</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Klammer ausmultiplizieren
{{!}}-
{{!}}<math>=x^2-3x-4,75</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;{{!}}{{!}}<math>=0,5x^2-x-x+2-16</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Zusammenfassen
{{!}}-
{{!}}&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;{{!}}{{!}}&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;{{!}}{{!}}<math>=0,5x^2-2x-14</math>
{{!}}}
 
{{{!}} class="wikitable"
{{!}}-
{{!}}'''Funktionsterm (5)'''{{!}}{{!}}&nbsp;&nbsp;&nbsp;'''Schritt-für-Schritt-Anleitung'''
{{!}}-
{{!}}<math>y=2(x+7)^2-35</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Klammer auflösen
{{!}}-
{{!}}<math>=2((x+7)(x+7))-35</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Klammer ausmultiplizieren
{{!}}-
{{!}}<math>=2(x^2+7x+7x+49)-35</math>
{{!}}-
{{!}}<math>=2x^2+14x+14x+98-35</math>{{!}}{{!}}&nbsp;&nbsp;&nbsp;Zusammenfassen
{{!}}-
{{!}}<math>=2x^2+28x+63</math>
{{!}}}|2=Lösung anzeigen|3=Lösung verbergen}}
|Üben}}




{{Übung|Diese Aufgabe befindet sich auch in den Kapiteln zur [[Quadratische Funktionen erkunden/Die Scheitelpunktform|Scheitelpunktform]] und zur [[Quadratische Funktionen erkunden/Die Normalform|Normalform]]. Du kannst sie hier erneut als Übung verwenden, indem du die Bilder bearbeitest, die du dort ausgelassen hast.
==Quadratische Funktionen anwenden==


{{Box|Übung|Diese Aufgabe befindet sich auch in den Kapiteln zur [[Mathematik-digital/Quadratische Funktionen erkunden/Die Scheitelpunktform|Scheitelpunktform]] und zur [[Mathematik-digital/Quadratische Funktionen erkunden/Die Normalform|Normalform]]. Du kannst sie hier erneut als Übung verwenden, indem du die Bilder bearbeitest, die du dort ausgelassen hast.


Finde Werte für a, d und e, so dass <math>f(x)</math> die Kurve auf dem Bild möglichst gut beschreibt.  
Finde Werte für a, d und e bzw. a, b und c, so dass <math>f(x)</math> bzw. <math>g(x)</math> die Kurve auf dem Bild möglichst gut beschreibt.  


<iframe scrolling="no" title="Übung: Modellierung mithilfe quadratischer Funktionen" src="https://www.geogebra.org/material/iframe/id/Jymnn6u8/width/895/height/610/border/888888/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/true/rc/false/ld/false/sdz/false/ctl/false" width="895px" height="610px" style="border:0px;"> </iframe> </iframe>
<ggb_applet id="Jymnn6u8" width="895" height="610" border="888888" />


<popup name="Lösungsvorschläge">
{{Lösung versteckt|1=Da es nicht die eine richtige Lösung gibt, findest du in der Tabelle Lösungsvorschläge sowie Spielräume, in denen die Parameter liegen können, um den Verlauf angemessen zu beschreiben.
Da es nicht die eine richtige Lösung gibt, findest du in der Tabelle Lösungsvorschläge sowie Spielräume, in denen die Parameter liegen können, um den Verlauf angemessen zu beschreiben.


'''Scheitelpunktform:'''
'''Scheitelpunktform:'''


{| class="wikitable"
{{{!}} class="wikitable"
|-
{{!}}-
! Hintergrundbild!! Lösungsvorschlag !! Parameter a !! Parameter d !! Parameter e
! Hintergrundbild!! Lösungsvorschlag !! Parameter a !! Parameter d !! Parameter e
|-
{{!}}-
| Angry Birds || <math>f(x)=-0.13(x-7)^2+4.85</math> || -0.15 ≤ a ≤ -0.13 || 6.80 ≤ d ≤ 7.20 || 4.70 ≤ e ≤ 5.00
{{!}} Angry Birds {{!}}{{!}} <math>f(x)=-0.13(x-7)^2+4.85</math> {{!}}{{!}} -0.15 ≤ a ≤ -0.13 {{!}}{{!}} 6.80 ≤ d ≤ 7.20 {{!}}{{!}} 4.70 ≤ e ≤ 5.00
|-
{{!}}-
| Golden Gate Bridge || <math>f(x)=0.04(x-5.7)^2+1</math> || 0.03 ≤ a ≤ 0.05 || 5.00 ≤ d ≤ 6.40 || 0.80 ≤ e ≤ 1.10
{{!}} Golden Gate Bridge {{!}}{{!}} <math>f(x)=0.04(x-5.7)^2+1</math> {{!}}{{!}} 0.03 ≤ a ≤ 0.05 {{!}}{{!}} 5.00 ≤ d ≤ 6.40 {{!}}{{!}} 0.80 ≤ e ≤ 1.10
|-
{{!}}-
| Springbrunnen || <math>f(x)=-0.33(x-4,85)^2+5.3</math> || -0.40 ≤ a ≤ -0.30 || 4.70 ≤ d ≤ 5.00 || 5.10 ≤ e ≤ 5.50
{{!}} Springbrunnen {{!}}{{!}} <math>f(x)=-0.33(x-4,85)^2+5.3</math> {{!}}{{!}} -0.40 ≤ a ≤ -0.30 {{!}}{{!}} 4.70 ≤ d ≤ 5.00 {{!}}{{!}} 5.10 ≤ e ≤ 5.50
|-
{{!}}-
| Elbphilharmonie (Bogen links)|| <math>f(x)=0.40(x-2,50)^2+4.35</math> || 0.33 ≤ a ≤ 0.47 || 2.40 ≤ d ≤ 2.60 || 4.25 ≤ e ≤ 4.40
{{!}} Elbphilharmonie (Bogen links) {{!}}{{!}} <math>f(x)=0.40(x-2,50)^2+4.35</math> {{!}}{{!}} 0.33 ≤ a ≤ 0.47 {{!}}{{!}} 2.40 ≤ d ≤ 2.60 {{!}}{{!}} 4.25 ≤ e ≤ 4.40
|-
{{!}}-
| Elbphilharmonie (Bogen mitte)|| <math>f(x)=0.33(x-5.85)^2+3.4</math> || 0.30 ≤ a ≤ 0.36 || 5.70 ≤ d ≤ 6.00 || 3.20 ≤ e ≤ 3.60
{{!}} Elbphilharmonie (Bogen mitte) {{!}}{{!}} <math>f(x)=0.33(x-5.85)^2+3.4</math> {{!}}{{!}} 0.30 ≤ a ≤ 0.36 {{!}}{{!}} 5.70 ≤ d ≤ 6.00 {{!}}{{!}} 3.20 ≤ e ≤ 3.60
|-
{{!}}-
| Elbphilharmonie (Bogen rechts)|| <math>f(x)=0.22(x-9,40)^2+3.60</math> || 0.18 ≤ a ≤ 0.27 || 9.30 ≤ d ≤ 9.50 || 3.55 ≤ e ≤ 3.65
{{!}} Elbphilharmonie (Bogen rechts) {{!}}{{!}} <math>f(x)=0.22(x-9,40)^2+3.60</math> {{!}}{{!}} 0.18 ≤ a ≤ 0.27 {{!}}{{!}} 9.30 ≤ d ≤ 9.50 {{!}}{{!}} 3.55 ≤ e ≤ 3.65
|-
{{!}}-
| Gebirgsformation || <math>f(x)=-0.2(x-5.4)^2+2.3</math> || -0.30 ≤ a ≤ -0.10 || 5.10 ≤ d ≤ 5.70 || 2.10 ≤ e ≤ 2.50
{{!}} Gebirgsformation {{!}}{{!}} <math>f(x)=-0.2(x-5.4)^2+2.3</math> {{!}}{{!}} -0.30 ≤ a ≤ -0.10 {{!}}{{!}} 5.10 ≤ d ≤ 5.70 {{!}}{{!}} 2.10 ≤ e ≤ 2.50
|-
{{!}}-
| Motorrad-Stunt || <math>f(x)=-0.07(x-7.7)^2+5.95</math> || -0.10 ≤ a ≤ -0.04 || 7.30 ≤ d ≤ 8.10 || 5.70 ≤ e ≤ 6.20
{{!}} Motorrad-Stunt {{!}}{{!}} <math>f(x)=-0.07(x-7.7)^2+5.95</math> {{!}}{{!}} -0.10 ≤ a ≤ -0.04 {{!}}{{!}} 7.30 ≤ d ≤ 8.10 {{!}}{{!}} 5.70 ≤ e ≤ 6.20
|-
{{!}}-
| Basketball || <math>f(x)=-0.32(x-6.5)^2+6.45</math> || -0.35 ≤ a ≤ -0.29 || 6.20 ≤ d ≤ 6.80 || 6.20 ≤ e ≤ 6.70
{{!}} Basketball {{!}}{{!}} <math>f(x)=-0.32(x-6.5)^2+6.45</math> {{!}}{{!}} -0.35 ≤ a ≤ -0.29 {{!}}{{!}} 6.20 ≤ d ≤ 6.80 {{!}}{{!}} 6.20 ≤ e ≤ 6.70
|}
{{!}}}


'''Normalform:'''
'''Normalform:'''


{| class="wikitable"
{{{!}} class="wikitable"
|-
{{!}}-
! Hintergrundbild!! Lösungsvorschlag !! Parameter a !! Parameter b !! Parameter c
! Hintergrundbild!! Lösungsvorschlag !! Parameter a !! Parameter b !! Parameter c
|-
{{!}}-
| Angry Birds || <math>f(x)=-0.13x^2+1.82x-1.52</math> || -0.14 ≤ a ≤ -0.13 || 1.82 ≤ b ≤ 1.95 || -1.85 ≤ c ≤ -1.52
{{!}}  Angry Birds {{!}}{{!}} <math>f(x)=-0.13x^2+1.82x-1.52</math> {{!}}{{!}} -0.14 ≤ a ≤ -0.13 {{!}}{{!}} 1.82 ≤ b ≤ 1.95 {{!}}{{!}} -1.85 ≤ c ≤ -1.52
|-
{{!}}-
| Golden Gate Bridge || <math>f(x)=0.04x^2-0.46x+2.30</math> || 0.03 ≤ a ≤ 0.05 || -0.40 ≤ b ≤ -0.50 || 2.05 ≤ c ≤ 2.30
{{!}} Golden Gate Bridge {{!}}{{!}} <math>f(x)=0.04x^2-0.46x+2.30</math> {{!}}{{!}} 0.03 ≤ a ≤ 0.05 {{!}}{{!}} -0.40 ≤ b ≤ -0.50 {{!}}{{!}} 2.05 ≤ c ≤ 2.30
|-
{{!}}-
| Springbrunnen || <math>f(x)=-0.33x^2+3.20x-2.46</math> || -0.40 ≤ a ≤ -0.30 || 3.15 ≤ b ≤ 3.35 || -2.95 ≤ c ≤ -2.45
{{!}} Springbrunnen {{!}}{{!}} <math>f(x)=-0.33x^2+3.20x-2.46</math> {{!}}{{!}} -0.40 ≤ a ≤ -0.30 {{!}}{{!}} 3.15 ≤ b ≤ 3.35 {{!}}{{!}} -2.95 ≤ c ≤ -2.45
|-
{{!}}-
| Elbphilharmonie (Bogen links)|| <math>f(x)=0.40x^2-2.00x+6.85</math> || 0.33 ≤ a ≤ 0.47 || 1.80 ≤ b ≤ 2.00 || 6.35 ≤ c ≤ 6.85
{{!}}  Elbphilharmonie (Bogen links){{!}}{{!}} <math>f(x)=0.40x^2-2.00x+6.85</math> {{!}}{{!}} 0.33 ≤ a ≤ 0.47 {{!}}{{!}} 1.80 ≤ b ≤ 2.00 {{!}}{{!}} 6.35 ≤ c ≤ 6.85
|-
{{!}}-
| Elbphilharmonie (Bogen mitte)|| <math>f(x)=0.33x^2-3.86x+14.69</math> || 0.30 ≤ a ≤ 0.36 || -4.10 ≤ b ≤ -3.60 || 13.65 ≤ c ≤ 14.95
{{!}} Elbphilharmonie (Bogen mitte){{!}}{{!}} <math>f(x)=0.33x^2-3.86x+14.69</math> {{!}}{{!}} 0.30 ≤ a ≤ 0.36 {{!}}{{!}} -4.10 ≤ b ≤ -3.60 {{!}}{{!}} 13.65 ≤ c ≤ 14.95
|-
{{!}}-
| Elbphilharmonie (Bogen rechts)|| <math>f(x)=0.22x^2-4.14x+23.04</math> || 0.18 ≤ a ≤ 0.27 || -3.40 ≤ b ≤ -5.05 || 19.70 ≤ c ≤ 27.20
{{!}}  Elbphilharmonie (Bogen rechts){{!}}{{!}} <math>f(x)=0.22x^2-4.14x+23.04</math> {{!}}{{!}} 0.18 ≤ a ≤ 0.27 {{!}}{{!}} -3.40 ≤ b ≤ -5.05 {{!}}{{!}} 19.70 ≤ c ≤ 27.20
|-
{{!}}-
| Gebirgsformation || <math>f(x)=-0.2x^2+2.16x-3.53</math> || -0.30 ≤ a ≤ -0.15 || 1.55 ≤ b ≤ 3.30 || -6.35 ≤ c ≤ -1.70
{{!}}  Gebirgsformation {{!}}{{!}} <math>f(x)=-0.2x^2+2.16x-3.53</math> {{!}}{{!}} -0.30 ≤ a ≤ -0.15 {{!}}{{!}} 1.55 ≤ b ≤ 3.30 {{!}}{{!}} -6.35 ≤ c ≤ -1.70
|-
{{!}}-
| Motorrad-Stunt || <math>f(x)=-0.07x^2+1.08x+1.79</math> || -0.10 ≤ a ≤ -0.04 || 0.85 ≤ b ≤ 1.30 || 0.95 ≤ c ≤ 1.79
{{!}} Motorrad-Stunt {{!}}{{!}} <math>f(x)=-0.07x^2+1.08x+1.79</math> {{!}}{{!}} -0.10 ≤ a ≤ -0.04 {{!}}{{!}} 0.85 ≤ b ≤ 1.30 {{!}}{{!}} 0.95 ≤ c ≤ 1.79
|-
{{!}}-
| Basketball || <math>f(x)=-0.32x^2+4.16x-7.07</math> || -0.35 ≤ a ≤ -0.29 || 3.80 ≤ b ≤ 4.40 || -7.40 ≤ c ≤ -6.10
{{!}} Basketball {{!}}{{!}} <math>f(x)=-0.32x^2+4.16x-7.07</math> {{!}}{{!}} -0.35 ≤ a ≤ -0.29 {{!}}{{!}} 3.80 ≤ b ≤ 4.40 {{!}}{{!}} -7.40 ≤ c ≤ -6.10
|}
{{!}}}|2=Lösungsvorschläge anzeigen|3=Lösungsvorschläge verbergen}}
</popup>}}
|Üben}}
 
{{Übung|'''Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 23)''' [[Datei:Notepad-117597.svg|35px|Notizblock mit Bleistift|verweis=Datei:Notepad-117597.svg]].
 
[[Datei:Aufgabe Terrasse für Kiosk.PNG|rahmenlos|700px|Übungsaufgabe]]
 
{{Lösung versteckt|1='''a)''' <math>A(2)=2 \cdot (20-2)=2 \cdot 18=36</math>,
 
<math>A(4)=4 \cdot (20-4)=4 \cdot 16=64</math>,
 
<math>A(10)=10 \cdot (20-10)=10 \cdot 10=100</math>
 
Für <math>x=2m</math> beträgt der Flächeninhalt der Terrasse <math>36m^2</math>. Ist die Seitenlänge <math>x=4m</math>, dann beträgt der Flächeninhalt der Terrasse <math>64m^2</math>. Bei einer Seitenlänge von <math>x=10m</math> beträgt der Flächeninhalt <math>100m^2</math>.
 
Hinweis: Hier kannst du auch andere Werte x eingesetzt haben. Um eine sinnvolle Lösung zu erhalten darf x weder kleiner <math>0m</math> noch größer als  <math>20m</math>  sein. In den Fällen würdest du einen negativen Flächeninhalt erhalten.
 
 
'''b)''' <math>A(x)=x \cdot (20-x)</math>
 
Für den Flächeninhalt eines Rechtecks gilt: <math>A=a \cdot b</math>, wobei a und b die Seitenlängen des Rechtecks beschreiben. Für die Terrasse gilt: <math>a=x</math> und <math>b=20-x</math>.|2=Lösung anzeigen|3=Lösung verbergen}}
}}
 
 
Erstellt von: [[Benutzer:Elena Jedtke|Elena Jedtke]] ([[Benutzer Diskussion:Elena Jedtke|Diskussion]])
 
[[Kategorie:Quadratische Funktion]]
[[Kategorie:Interaktive Übung]]
[[Kategorie:LearningApps]]
[[Kategorie:GeoGebra]]

Aktuelle Version vom 30. März 2022, 21:39 Uhr

In diesem Kapitel des Lernpfads findest du Übungsaufgaben zu allen Inhalten, die du in den vorherigen Abschnitten kennengelernt hast. Sie sollen dir helfen, dein Wissen zu festigen. Klicke im Inhaltsverzeichnis einfach auf das Thema, zu dem du Übungsaufgaben bearbeiten möchtest.


Hinweis: Du musst nicht alle Aufgaben dieser Seite bearbeiten. Suche dir gezielt Aufgaben zum Üben heraus.

Parameter

Die Parameter der Scheitelpunktform

Übung

Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 17) Notizblock mit Bleistift.

Zeichne die Graphen der folgenden Funktionen:

a)                  b)             c)

d)           e)            f)               g)

Schaue dir die Merksätze zu den Parametern und in deinem Hefter noch einmal an. Dadurch kannst du herausfinden wie die Parabel, die du zeichnen möchtest aussehen muss.

Ermittle einzelne Punkte oder lege eine Wertetabelle an, um die Parabeln zu zeichnen.

Gib für die Parameter und die Werte im Applet an, so dass g(x) einem der Funktionsterme (a)-(g) gleicht. Vergleiche zur Kontrolle die Parabel im Applet mit deiner gezeichneten Parabel.

GeoGebra


Übung

Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 18) Notizblock mit Bleistift.

In dieser Aufgabe werden die Parameter kombiniert, die du in dem Kapitel Die Parameter der Scheitelpunktform kennengelernt hast. Gegeben ist die Wertetabelle:

Übung zu Parametern

a) Zeichne die Graphen zu den Funktionen f(x), g(x) und h(x) in das Koordinatensystem in deinem Hefter. Nicht alle y-Werte können sinnvoll in den Ausschnitt, der in dem Koordinatensystem gezeigt wird, eingetragen werden.

Lösung zu Tabelle Übung1

b) Bestimme die Funktionsterme in Scheitelpunktform.

Ist der Graph gestreckt, gestaucht und/oder gespiegelt? Durch die Beantwortung dieser Frage kannst du den Wert des Parameters eingrenzen. Anschließend findest du den genauen Wert zum Beispiel durch systematisches Probieren und Abgleichen mit den gegebenen Funktionswerten in der Tabelle.

Lies den Scheitelpunkt ab. Setze dessen Koordinaten in den Funktionsterm ein.


Übung

In diesem Applet sind verschiedene Graphen abgebildet. Ermittle die zugehörigen Funktionsterme und trage sie in die Felder unter den jeweiligen Graphen ein.

Hinweise:

1. Beginne jeden Term mit
2. Wenn du ein "hoch 2" einfügen möchtest, schreibe ^2.

Lösung zu Applet


Übung

Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S.19) Notizblock mit Bleistift.

Vervollständige die Tabelle:

Übungsaufgabe

Lösungsvorschlag


Die Parameter der Normalform

Übung

Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 19) Notizblock mit Bleistift.

Zwei Parabeln sollen den gleichen y-Achsenabschnitt c haben. Gib je zwei Funktionsterme in Normalform an.

a)        b)        c)        d)        e)

Deine Terme können ganz anders aussehen, als die Terme hier in den Lösungsvorschlägen. Wichtig ist, dass deine zwei Terme jeweils den gleichen y-Achsenabschnitt wie angegeben haben. Die Parameter und können dann beliebig variiert werden.

a)               b)               c)    
                           
d)               e)    
                   


Übung

Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 20) und einen Partner Notepad-117597.svgPuzzle-1020221 640.jpg.

a) Denke dir drei Funktionsterme in Normalform aus.

Terme in Normalform quadratischer Funktionen sehen allgemein so aus: . Denke dir Werte für die Parameter und aus und setze sie ein.

Beispiel: Für , und erhält man: .

b) Gib deinem Partner deine Funktionsterme und nimm dafür seine. Zeichnet die Graphen zu den Termen.

Zur Kontrolle kannst du das unten stehende GeoGebra-Applet benutzen. Gib die Parameter der Funktionsterme ein und vergleiche deinen Graph mit dem Ergebnis im Applet.

c) Vergleicht eure Ergebnisse und erklärt Schritt-für-Schritt wie ihr die Graphen erstellt habt. Notiert eine gemeinsame Schritt-für-Schritt-Anleitung in euren Hefter.

Eine Anleitung kann wie folgt aussehen.

  1. y-Achsenabschnitt P(0;c) ablesen.
  2. Verschiedene x-Werte in den Term einsetzen und so die zugehörigen y-Werte bestimmen (Erstellen einer Tabelle).
  3. Koordinatensystem zeichnen und Punkte eintragen.
  4. Punkte zu einer Parabel verbinden.


GeoGebra

Allgemeine Übungen zu Parametern

Übung

Teste dein Wissen und werde Punkte-Millionär. Schaffst du es ins Finale?


Übung

Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 21) und einen Partner Notepad-117597.svgPuzzle-1020221 640.jpg.

a) Denke dir zwei Terme quadratischer Funktionen aus und notiere eine Lagebeschreibung des Graphen.

Die Parabel ist eine an der x-Achse gespiegelte Normalparabel. Sie ist um je eine Einheit nach rechts und nach oben verschoben. Ihr Scheitelpunkt lautet .

b) Tausche deine Beschreibungen (nicht den Term!) mit denen deines Partners aus und bestimme seine Funktionsterme.

Die Lösung zu dem Beispiel in Übungsteil a) lautet: .

c) Kontrolliert eure Ergebnisse gegenseitig. Habt ihr die richtigen Terme gefunden? Wenn nicht, versucht gemeinsam eure Fehler aufzudecken und zu klären.

Schaut euch noch einmal die Merksätze auf den Parameterseiten der Normalform und der Scheitelpunktform an.



Von der Scheitelpunkt- zur Normalform

Übung

Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 22) Notizblock mit Bleistift.

Forme die folgenden Terme in Scheitelpunktform in Normalform um:

                          

                    

             

Funktionsterm (1)    Schritt-für-Schritt-Anleitung     Funktionsterm (6)    Schritt-für-Schritt-Anleitung
   Klammer auflösen        Klammer auflösen
   Klammer ausmultiplizieren        Klammer ausmultiplizieren
   Zusammenfassen        Zusammenfassen
       
Funktionsterm (2)    Schritt-für-Schritt-Anleitung   Funktionsterm (7)    Schritt-für-Schritt-Anleitung
   Klammer auflösen      Klammer auflösen
   innere Klammer ausmultiplizieren      Klammer ausmultiplizieren
   Klammer ausmultiplizieren      Zusammenfassen
   Zusammenfassen        
           
Funktionsterm (3)    Schritt-für-Schritt-Anleitung   Funktionsterm (8)    Schritt-für-Schritt-Anleitung
   Klammer auflösen      Klammer auflösen
   innere Klammer ausmultiplizieren      innere Klammer ausmultiplizieren
   Klammer ausmultiplizieren      Klammer ausmultiplizieren
   Zusammenfassen      Zusammenfassen
     
Funktionsterm (4)    Schritt-für-Schritt-Anleitung     Funktionsterm (9)    Schritt-für-Schritt-Anleitung
   Klammer auflösen        Klammer auflösen
   Klammer ausmultiplizieren        innere Klammer ausmultiplizieren
   Zusammenfassen        Klammer ausmultiplizieren
           Zusammenfassen
             
Funktionsterm (5)    Schritt-für-Schritt-Anleitung
   Klammer auflösen
   Klammer ausmultiplizieren
   Zusammenfassen


Quadratische Funktionen anwenden

Übung

Diese Aufgabe befindet sich auch in den Kapiteln zur Scheitelpunktform und zur Normalform. Du kannst sie hier erneut als Übung verwenden, indem du die Bilder bearbeitest, die du dort ausgelassen hast.

Finde Werte für a, d und e bzw. a, b und c, so dass bzw. die Kurve auf dem Bild möglichst gut beschreibt.

GeoGebra

Da es nicht die eine richtige Lösung gibt, findest du in der Tabelle Lösungsvorschläge sowie Spielräume, in denen die Parameter liegen können, um den Verlauf angemessen zu beschreiben.

Scheitelpunktform:

Hintergrundbild Lösungsvorschlag Parameter a Parameter d Parameter e
Angry Birds -0.15 ≤ a ≤ -0.13 6.80 ≤ d ≤ 7.20 4.70 ≤ e ≤ 5.00
Golden Gate Bridge 0.03 ≤ a ≤ 0.05 5.00 ≤ d ≤ 6.40 0.80 ≤ e ≤ 1.10
Springbrunnen -0.40 ≤ a ≤ -0.30 4.70 ≤ d ≤ 5.00 5.10 ≤ e ≤ 5.50
Elbphilharmonie (Bogen links) 0.33 ≤ a ≤ 0.47 2.40 ≤ d ≤ 2.60 4.25 ≤ e ≤ 4.40
Elbphilharmonie (Bogen mitte) 0.30 ≤ a ≤ 0.36 5.70 ≤ d ≤ 6.00 3.20 ≤ e ≤ 3.60
Elbphilharmonie (Bogen rechts) 0.18 ≤ a ≤ 0.27 9.30 ≤ d ≤ 9.50 3.55 ≤ e ≤ 3.65
Gebirgsformation -0.30 ≤ a ≤ -0.10 5.10 ≤ d ≤ 5.70 2.10 ≤ e ≤ 2.50
Motorrad-Stunt -0.10 ≤ a ≤ -0.04 7.30 ≤ d ≤ 8.10 5.70 ≤ e ≤ 6.20
Basketball -0.35 ≤ a ≤ -0.29 6.20 ≤ d ≤ 6.80 6.20 ≤ e ≤ 6.70

Normalform:

Hintergrundbild Lösungsvorschlag Parameter a Parameter b Parameter c
Angry Birds -0.14 ≤ a ≤ -0.13 1.82 ≤ b ≤ 1.95 -1.85 ≤ c ≤ -1.52
Golden Gate Bridge 0.03 ≤ a ≤ 0.05 -0.40 ≤ b ≤ -0.50 2.05 ≤ c ≤ 2.30
Springbrunnen -0.40 ≤ a ≤ -0.30 3.15 ≤ b ≤ 3.35 -2.95 ≤ c ≤ -2.45
Elbphilharmonie (Bogen links) 0.33 ≤ a ≤ 0.47 1.80 ≤ b ≤ 2.00 6.35 ≤ c ≤ 6.85
Elbphilharmonie (Bogen mitte) 0.30 ≤ a ≤ 0.36 -4.10 ≤ b ≤ -3.60 13.65 ≤ c ≤ 14.95
Elbphilharmonie (Bogen rechts) 0.18 ≤ a ≤ 0.27 -3.40 ≤ b ≤ -5.05 19.70 ≤ c ≤ 27.20
Gebirgsformation -0.30 ≤ a ≤ -0.15 1.55 ≤ b ≤ 3.30 -6.35 ≤ c ≤ -1.70
Motorrad-Stunt -0.10 ≤ a ≤ -0.04 0.85 ≤ b ≤ 1.30 0.95 ≤ c ≤ 1.79
Basketball -0.35 ≤ a ≤ -0.29 3.80 ≤ b ≤ 4.40 -7.40 ≤ c ≤ -6.10

Übung

Für diese Übung benötigst du deinen Hefter (Lernpfadaufgaben, S. 23) Notizblock mit Bleistift.

Übungsaufgabe

a) ,

,

Für beträgt der Flächeninhalt der Terrasse . Ist die Seitenlänge , dann beträgt der Flächeninhalt der Terrasse . Bei einer Seitenlänge von beträgt der Flächeninhalt .

Hinweis: Hier kannst du auch andere Werte x eingesetzt haben. Um eine sinnvolle Lösung zu erhalten darf x weder kleiner noch größer als sein. In den Fällen würdest du einen negativen Flächeninhalt erhalten.


b)

Für den Flächeninhalt eines Rechtecks gilt: , wobei a und b die Seitenlängen des Rechtecks beschreiben. Für die Terrasse gilt: und .



Erstellt von: Elena Jedtke (Diskussion)