Signifikanztest für binomialverteilte Zufallsgrößen/Wiederholung Binomialverteilung: Unterschied zwischen den Versionen
K (Rechtschreibfehler verbessert) Markierung: 2017-Quelltext-Bearbeitung |
K (Rechtschreibfehler verbessert) Markierung: 2017-Quelltext-Bearbeitung |
||
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt) | |||
Zeile 5: | Zeile 5: | ||
<div class="lueckentext-quiz"> | <div class="lueckentext-quiz"> | ||
Ein Zufallsexperiment mit genau zwei Ergebnissen (Treffer und Niete) nennt man ''' Bernoulli-Experiment'''. Wird solch ein Experiment n-mal wiederholt | Ein Zufallsexperiment mit genau zwei Ergebnissen (Treffer und Niete) nennt man ''' Bernoulli-Experiment'''. Wird solch ein Experiment n-mal wiederholt und sind die Versuche unabhängig voneinander, erhält man eine '''Bernoulli-Kette''' der Länge n. Ist p die Trefferwahrscheinlichkeit und X die Zufallsvariable, welche die Anzahl k der Treffer angibt, dann kann die Wahrscheinlichkeit für k Treffer durch die '''Formel von Bernoulli''' (<math>P(X=k)=B_{n,p}(k)=\binom{n}{k}\cdot p^k\cdot(1-p)^{n-k}</math>) berechnet werden. Die Wahrscheinlichkeitsverteilung für X heißt '''Binomialverteilung''' mit den Parametern n und p. Der '''Erwartungswert''' der Binomialverteilung wird durch <math>E(X)=n\cdot p</math> berechnet. Stellt man die Binomialverteilung in einer Grafik dar (p-k Diagramm), erhält man näherungsweise eine ''' Glockenkurve'''. Der Hochpunkt der Funktion liegt beim Erwartungswert. Neben der Binomialverteilung benötigt man auch häufig die zugehörige '''Verteilungsfunktion''', für deren Wahrscheinlichkeit die Schreibweise <math>P(X\leq k)</math> üblich ist. Bei der Verteilungsfunktion werden die Wahrscheinlichkeiten bis zu einem bestimmen k-Wert aufsummiert: <math>P(X\leq k)=\sum_{i=0}^k B_{n,p}(i)</math>. | ||
</div>|3=Arbeitsmethode | </div>|3=Arbeitsmethode | ||
Zeile 21: | Zeile 21: | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
[[Datei:Neueins.png|600px]] | [[Datei:Neueins.png|600px]] | ||
Den Hochpunkt hat die Funktion beim Erwartungswert (<math>E(X)=n\cdot p</math>)<br> In dieser Aufgabe errechnet sich der Erwartungswert also wie folgt: <math>E(X)=1000\cdot 0.71=710</math>.<br> Hinweis! Die Breite der Glockenkurve | Den Hochpunkt hat die Funktion beim Erwartungswert (<math>E(X)=n\cdot p</math>)<br> In dieser Aufgabe errechnet sich der Erwartungswert also wie folgt: <math>E(X)=1000\cdot 0.71=710</math>.<br> Hinweis! Die Breite der Glockenkurve ergibt sich aus der Standardabweichung. Für die Skizze reicht es aus, wenn du die Breite der Kurve nach Gefühl einträgst. | ||
}} | }} | ||
Zeile 35: | Zeile 35: | ||
c) dass '''höchstens''' 680 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen. | c) dass '''höchstens''' 680 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen. | ||
{{Lösung versteckt|1= Höchtens heißt, es können 0,1,2,3, ...,680 der Befragten den Klimawandel als Bedrohung ansehen.<br>In der Skizze ist die gesuchte Wahrscheinlichkeit rot markiert.<br>[[Datei:NeuDrei.png|600px]]<br> | {{Lösung versteckt|1= Höchtens heißt, es können 0,1,2,3, ...,680 der Befragten den Klimawandel als Bedrohung ansehen.<br>In der Skizze ist die gesuchte Wahrscheinlichkeit rot markiert.<br>[[Datei:NeuDrei.png|600px]]<br> | ||
Nutze die Verteilungsfunktion (siehe Übung 1).<br> Zur Berechnung nutze deinen | Nutze die Verteilungsfunktion (siehe Übung 1).<br> Zur Berechnung nutze deinen Taschenrechner! (Hinweis: Bei den meisten Taschenrechnern ist es die Funktion binomcdf(n,p,k))<br> | ||
|2=gestufte Hilfe einblenden|3= gestufte Hilfe ausblenden}} | |2=gestufte Hilfe einblenden|3= gestufte Hilfe ausblenden}} | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= |
Aktuelle Version vom 6. März 2020, 20:48 Uhr
Hier wiederholst du nochmal die wichtigsten Grundlagen der Binomialverteilung.
In der ersten Übung wiederholst du die grundlegenden Begriffe der Binomialverteilung.
Fülle den Lückentext aus!
Ein Zufallsexperiment mit genau zwei Ergebnissen (Treffer und Niete) nennt man . Wird solch ein Experiment n-mal wiederholt und sind die Versuche unabhängig voneinander, erhält man eine der Länge n. Ist p die Trefferwahrscheinlichkeit und X die Zufallsvariable, welche die Anzahl k der Treffer angibt, dann kann die Wahrscheinlichkeit für k Treffer durch die () berechnet werden. Die Wahrscheinlichkeitsverteilung für X heißt mit den Parametern n und p. Der der Binomialverteilung wird durch berechnet. Stellt man die Binomialverteilung in einer Grafik dar (p-k Diagramm), erhält man näherungsweise eine . Der Hochpunkt der Funktion liegt beim Erwartungswert. Neben der Binomialverteilung benötigt man auch häufig die zugehörige , für deren Wahrscheinlichkeit die Schreibweise üblich ist. Bei der Verteilungsfunktion werden die Wahrscheinlichkeiten bis zu einem bestimmen k-Wert aufsummiert: .
Bernoulli-KetteErwartungswertVerteilungsfunktionGlockenkurveFormel von BernoulliBinomialverteilungBernoulli-Experiment
Vor allem die grafische Anschauung der Binomialverteilung und der Umgang mit der Verteilungsfunktion sind wichtig für die Durchführung eines Signifikanztests. Prüfe und wiederhole dein Können dazu in Übung 2.
Die Schüler*innen der Umweltgruppe befragen 1000 Menschen in Deutschland, ob sie den Klimawandel als Bedrohung ansehen. Für die folgenden Aufgaben wird angenommen, dass immer noch 71% der Menschen in Deutschland sich durch den Klimawandel bedroht fühlen.
a) Skizziere die Binomialverteilung für die Befragung.
Bereche die Wahrscheinlichkeit dafür,...
b) dass in der Stichprobe genau 710 Menschen den Klimawandel als Bedrohung ansehen.
c) dass höchstens 680 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen.
d) dass mindestens 740 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen.
Super gemacht! Dann geht es jetzt weiter mit dem Signifikanztest!