Lernpfad Energie/Armbrustschießen im Weltall

Aus ZUM-Unterrichten

Ein Gedankenexperiment

Wir machen nun etwas, was Physiker gerne machen: ein Gedankenexperiment. Wir stellen uns einen Astronauten in ferner Zukunft vor, der mit seinem Raumschiff zu verschiedenen Planeten und Monden reist. Da unser Astronaut Sportschütze ist, Feuerwaffen jedoch an Bord verboten sind, nimmt er eine große und eine kleine Sport-Armbrust mit, um zu üben.

Was genau ist eine Armbrust?

Alte Abbildung einer Armbrust

Aus alten Filmen weißt Du wahrscheinlich, was eine Armbrust ist. Im Gegensatz zum Bogenschießen, wo man die Waffe die ganze Zeit mit Muskelkraft gespannt halten muss, gibt es hier eine Rückhaltevorrichtung mit Abzug (ähnlich wie bei einem Gewehr). Die Armbrust wird zunächst mit Muskelkraft gespannt, bis sie einrastet. Sie bleibt danach gespannt, bis man am Abzug abdrückt.

So ist das Spannen der Armbrust vom Zielen getrennt und man muss während des Zielens keine große Kraft aufwenden, was einen großen Vorteil im Hinblick auf Komfort und Zielgenauigkeit darstellt. Zum Teil wird zum Spannen auch ein Spannhebel verwendet, so dass man die Armbrust viel stärker spannen kann als einen Bogen. Es werden längere Pfeile oder kürzere Armbrust-Bolzen verschossen.

Physikalisches Experiment: "Schuss nach oben"

Unser Astronaut ist allerdings nicht nur Sportschütze sondern - wie viele Astronauten - auch Physiker. Deshalb macht er auf verschiedenen Himmelskörpern (vorzugsweise solche ohne Atmosphäre, weil dann die Luftreibung nicht stört) auch systematische Experimente mit seinen beiden Armbrust-Exemplaren und Bolzen unterschiedlicher Masse. Er schießt die Bolzen senkrecht nach oben und untersucht, wie weit sie nach oben fliegen. Die Ergebnisse findest Du in der folgenden Tabelle:

Jupitermond Ganymed
Planet Mars
Armbrust Himmelskörper (Ortsfaktor g [N/kg]) Bolzenmasse m [kg] max. Flughöhe h [m]
klein Mars (3,7) 0,01 2027
klein Mars (3,7) 0,02 1014
klein Erdmond (1,6) 0,01 4688
klein Erdmond (1,6) 0,02 2344
klein Ganymed (1,4) 0,01 5357
klein Ganymed (1,4) 0,02 2679
groß Mars (3,7) 0,01 2703
groß Mars (3,7) 0,02 1351
groß Erdmond (1,6) 0,01 6250
groß Erdmond (1,6) 0,02 3125
groß Ganymed (1,4) 0,01 7143
groß Ganymed (1,4) 0,02 3571

Wundere Dich nicht über die großen Flughöhen: Die Luftreibung macht mehr aus, als man vielleicht denkt. Und die leichten Himmelskörper haben deutlich weniger Massenanziehung (Gravitation) als die Erde.

Aufgabe 1: Ein grober Blick auf die Messdaten

Fülle den folgenden Lückentext aus:

Bei gleicher Armbrust und gleichem Bolzen fliegt der Bolzen höher, wenn der Ortsfaktor des Himmelskörpers geringer ist. Bei gleichen Himmelskörper und gleicher Armbrust fliegt ein schwerer Bolzen weniger hoch als ein leichter Bolzen: Bolzenmasse und Flughöhe sind dann scheinbar antiproportional. Bei sonst gleichen Bedingungen schießt die kleine Armbrust weniger hoch.

Das war natürlich nur eine kleine Fingerübung. Aber Du kannst auch schon einmal üben, ein Bildschirm-Foto ("Screenshot") zu machen und zu speichern.

Aufgabe 1.2: Kreatives Formelfinden

Wir haben es hier mit drei physikalischen Größen zu tun:

  • Der Ortsfaktor des Planeten
  • Die Masse des Bolzens
  • Die maximale Flughöhe

Die Kombinationen der drei Größen sind in allen Zeilen unterschiedlich. Kannst Du trotzdem eine Formel finden, die bei allen Zeilen der kleinen Armbrust den einen einzigen Wert liefert und bei allen Zeilen der großen Armbrust einen einzigen Wert liefert (jedenfalls ungefähr). Die beiden Werte dürfen natürlich unterschiedlich sein.

Überprüfe Deine Formel an mindestens 5 Zeilen der Tabelle. Falls Du das Ergebnis zufriedenstellend findest, notiere Sie Dir in Deine Papierunterlagen. Vermerke dazu auch Aufgabennummer und Aufgabentitel.