Benutzer:Cloehner/Dreiecke und Winkel/Der Satz des Thales: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
(Die Seite wurde neu angelegt: „Neben den Sätzen zu Winkelbeziehungen hast du bereits Möglichkeiten zur Konstruktion von Winkelhalbierenden und Mittelsenkrechten kennengelernt. Außerdem ka…“)
Markierung: 2017-Quelltext-Bearbeitung
 
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(5 dazwischenliegende Versionen von einem anderen Benutzer werden nicht angezeigt)
Zeile 1: Zeile 1:
Neben den Sätzen zu Winkelbeziehungen hast du bereits Möglichkeiten zur Konstruktion von Winkelhalbierenden und Mittelsenkrechten kennengelernt. Außerdem kannst du bereits mithilfe der Kongruenzsätze Dreiecke konstruieren. Der Satz des Thales, mit dem du dich nun auseinandersetzen sollst, liefert dir eine weitere Möglichkeit, besondere Dreiecke zu konstruieren.
 
Neben den Sätzen zu Winkelbeziehungen hast du bereits Möglichkeiten zur Konstruktion von Winkelhalbierenden und Mittelsenkrechten kennengelernt. Außerdem kannst du bereits mithilfe der Kongruenzsätze Dreiecke konstruieren. Der Satz des Thales, mit dem du dich nun auseinandersetzen sollst, liefert dir eine weitere Möglichkeit, besondere Dreiecke zu konstruieren. Dokumentiere deine Ergebnisse auf diesem {{pdf|Protokoll_Thales_Wiki.pdf|Arbeitsblatt}}




Zeile 6: Zeile 8:
{{Aufgaben|1|Bewege im GeoGebra-Applet die Punkte <math>C</math> und <math>C'</math>. Beobachte dabei die Winkel in den beweglichen Punkten. Bei einem der Dreiecke liegt immer eine Besonderheit vor. Beschreibe deine Beobachtungen!}}
{{Aufgaben|1|Bewege im GeoGebra-Applet die Punkte <math>C</math> und <math>C'</math>. Beobachte dabei die Winkel in den beweglichen Punkten. Bei einem der Dreiecke liegt immer eine Besonderheit vor. Beschreibe deine Beobachtungen!}}


{{Aufgaben|2|Untersuche das "besondere" Dreieck genauer: Aktiviere durch einen Rechtsklick die Spur des zweiten Eckpunktes. Auf welcher besonderen Linie bewegt sich dieser Punkt?}}
{{Aufgaben|2|Untersuche das "besondere" Dreieck genauer: Aktiviere durch einen Rechtsklick die Spur des zweiten Eckpunktes. Auf welcher besonderen Linie bewegt sich dieser Punkt? Zeichne diese Linie auf dem Arbeitsblatt ein!}}


{{Aufgaben|3|Untersuche das andere Dreieck genauer. Verschiebe den beweglichen Punkt an verschiedene Positionen auf beiden seiten der besonderen Linie aus Aufgabe 2. Betrachte jeweils den Winkel in diesem Punkt. Was fällt auf?}}
{{Aufgaben|3|Untersuche das andere Dreieck genauer. Verschiebe den beweglichen Punkt an verschiedene Positionen auf beiden Seiten der besonderen Linie aus Aufgabe 2. Betrachte jeweils den Winkel in diesem Punkt. Was fällt auf?}}


<ggb_applet id="yzbeadgy" width="700" height="500" border="888888" rc="true" />
<ggb_applet id="yzbeadgy" width="700" height="500" border="888888" rc="true" />
==Wende den Satz des Thales an==
{{Aufgaben|4|Nutze den Satz des Thales, um fünf verschiedene rechtwinklige Dreiecke mit derselben Hypotenuse (die Seite, die dem rechten Winkel gegenüber liegt) zu zeichnen. Die Länge der Hypotenuse soll <math>8 \ cm</math> betragen.}}
==<span class="fa fa-rocket fa-lg"></span> Beweise den Satz des Thales==
{{Aufgaben|5|Folge den Anweisungen im Applet. Notiere zu jedem Schritt deine zentrale Beobachtung in deinen Unterlagen}}
<ggb_applet id="RCM3PKWt" width="900" height="500" border="888888" />
{{Fortsetzung|vorher=Vorheriger Abschnitt: Die Winkelsumme im Dreieck|vorherlink=Benutzer:Cloehner/Dreiecke und Winkel/Die Winkelsumme im Dreieck}}
[[Kategorie: keine Kategorie]]

Aktuelle Version vom 23. April 2022, 15:58 Uhr


Neben den Sätzen zu Winkelbeziehungen hast du bereits Möglichkeiten zur Konstruktion von Winkelhalbierenden und Mittelsenkrechten kennengelernt. Außerdem kannst du bereits mithilfe der Kongruenzsätze Dreiecke konstruieren. Der Satz des Thales, mit dem du dich nun auseinandersetzen sollst, liefert dir eine weitere Möglichkeit, besondere Dreiecke zu konstruieren. Dokumentiere deine Ergebnisse auf diesem Pdf20.gif Arbeitsblatt


Erkunde den Satz des Thales

Aufgabe 1
Bewege im GeoGebra-Applet die Punkte und . Beobachte dabei die Winkel in den beweglichen Punkten. Bei einem der Dreiecke liegt immer eine Besonderheit vor. Beschreibe deine Beobachtungen!


Aufgabe 2
Untersuche das "besondere" Dreieck genauer: Aktiviere durch einen Rechtsklick die Spur des zweiten Eckpunktes. Auf welcher besonderen Linie bewegt sich dieser Punkt? Zeichne diese Linie auf dem Arbeitsblatt ein!


Aufgabe 3
Untersuche das andere Dreieck genauer. Verschiebe den beweglichen Punkt an verschiedene Positionen auf beiden Seiten der besonderen Linie aus Aufgabe 2. Betrachte jeweils den Winkel in diesem Punkt. Was fällt auf?


GeoGebra


Wende den Satz des Thales an

Aufgabe 4
Nutze den Satz des Thales, um fünf verschiedene rechtwinklige Dreiecke mit derselben Hypotenuse (die Seite, die dem rechten Winkel gegenüber liegt) zu zeichnen. Die Länge der Hypotenuse soll betragen.


Beweise den Satz des Thales

Aufgabe 5
Folge den Anweisungen im Applet. Notiere zu jedem Schritt deine zentrale Beobachtung in deinen Unterlagen


GeoGebra