Potenzfunktionen - 2. Stufe

Aus ZUM-Unterrichten
Version vom 2. Februar 2009, 11:26 Uhr von Main>Jan Wörler (→‎Ungerade Potenzen: - parabel & hyperbel)

Die Graphen der Funktionen mit f(x) = x-n, n IN

Gerade Potenzen

Wir betrachten zunächst die Graphen der Funktionen mit f(x) = x-n, wenn n eine gerade Zahl ist, also n = 2, 4, 6, ...

Vorlage:Arbeiten
Die Datei [INVALID] wurde nicht gefunden.

Parabel und Hyperbel

XXX ZUSATZINFO EINFÜGEN? XXX (JW)

Du hat nun Potenzfunktionen der Bauart und kennengelernt. Ihre Graphen spielen in der Mahtematik und in den Naturwissenschaften eine wichtige Rolle und haben deshalb eigene Bezeichnungen:

Die Graphen von Funktionen der Form f(x)=x^n mit einer natürlichen Zahl n heißen Parabeln. Ist f(x)=x^2, dann heißt der Graph Normalparabel; wenn f(x)=x^3 dann nennt man den Graphen kubische Grundparabel (oder Parabel dritter Ordnung).

Die Graphen von Funktionen der Form f(x)=x^{-n} mit einer natürlichen Zahl n heißen Hyperbeln. Hyperbeln haben stets je zwei Asymptoden, die auch die Lücken in Definitions- und Wertemenge beschreiben.

XXX ZUSATZINFO ENDE XXX (JW)


Ungerade Potenzen

Wir betrachten nun die Graphen der Funktionen mit , wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..

Die Datei [INVALID] wurde nicht gefunden.

Vorlage:Arbeiten

Teste dein Wissen

Vorlage:Arbeiten

Die Graphen von f(x) = a*x-n, mit a IR

Wir betrachten jetzt die Funktionen mit , wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n IN, a IR .

Vorlage:Arbeiten Die Datei [INVALID] wurde nicht gefunden.


Die Datei [INVALID] wurde nicht gefunden.

Vorlage:Arbeiten

Teste Dein Wissen