Grenzwerte spezieller Funktionen
Aus ZUM-Unterrichten
Hinweise zur Bearbeitung
- Behandle die Aufgaben der Reihe nach.
- Notiere dir selbständig die gewonnenen Erkenntnisse zu den Grenzwerten der jeweiligen Funktionen in dein Heft.
- Die Lösungen am Ende jeder Aufgabe können dir dabei helfen. Nutze sie möglichst nur, um deine Ergebnisse zu überprüfen.
Exponentialfunktionen
Verhalten im Unendlichen der Grundform , a>0
Aufgabe
Untersuche die Funktion mit Hilfe des Schiebereglers a und beantworte die Fragen.
- a) Welche zwei Fälle müssen für a unterschieden werden?
- b) Gib die Grenzwerte und in Abhängigkeit von a an.
Lösung: Vorlage:Versteckt
Verhalten im Unendlichen der Form , mit
Aufgabe
Untersuche die Funktionen und mit Hilfe der Schieberegler b und d und beantworte die Fragen.
- a) Welchen Einfluss hat das Vorzeichen von b auf den Verlauf des Graphen?
- b) Welchen Einfluss hat d auf den Verlauf des Graphen?
- c) Was kannst du über die waagrechte Asymptote in Abhängigkeit von b und d sagen? Begründe!
Lösung: Vorlage:Versteckt
Aufgaben
Ganzrationale Funktionen
Das Grenzwertverhalten von ganzrationalen Funktionen wurde im vorherigen Kapitel bereits untersucht. Vgl. Lernpfad Eigenschaften ganzrationaler Funktionen bzw. Datei: Lösung AB.pdf
Aufgabe
- a) Wiederhole noch einmal die Erkenntnisse zum Grenzwertverhalten der Funktionen aus dem letzten Kapitel.
- b) Übersetze die Ergebnisse in die mathematische Schreibweise.
Trigonometrische Funktionen
Aufgabe
Betrachte die Verläufe der beiden trigonometrischen Funktionen f(x) = sinx und g(x) = cosx.
- a) Welches Grenzwertverhalten weisen die beiden Funktionen auf?
- a) Haben Veränderungen der Parameter einen Einfluss auf das Grenzwertverhalten?
Lösung: Vorlage:Versteckt
Übungsaufgaben
Vertiefende Aufgaben
Vorlage:Arbeiten<metakeywords>ZUM2Edutags,ZUM-Wiki,Mathematik-digital,Grenzwerte spezieller Funktionen,Grenzwert,Grenzwerte,Funktion,Funktionen,Mathematik,Lernpfad</metakeywords>