Signifikanztest für binomialverteilte Zufallsgrößen/Wiederholung Binomialverteilung

Aus ZUM-Unterrichten


Hier wiederholst du nochmal kurz die wichtigsten Inhalte der Binomialverteilung.

Übung 1: Grundlagen der Binomialverteilung

Fülle den Lückentext aus!

Ein Zufallsexperiment mit genau zwei Ergebnissen (Treffer und Niete) nennt man Bernoulli-Experiment. Wird solch ein Experiment n-mal wiederholt, und sind die Versuche unabhängig voneinander, erhält man eine Bernoulli-Kette der Länge n. Ist p die Trefferwahrscheinlichkeit und X eine Zufallsvariable, welche die Anzahl k der Treffer angibt, dann kann die Wahrscheinlichkeit für k Treffer durch die Formel von Bernoulli () berechnet werden. Die Wahrscheinlichkeitsverteilung für X heißt Binomialverteilung mit den Parametern n und p. Neben der Binomialverteilung benötigt man auch häufig die zugehörige Verteilungsfunktion, für deren Wahrscheinlichkeit die Schreibweise üblich ist. Die kumulierten Wahrscheinlichkeiten werden wie folgt berechnet:



Vor allem die grafische Anschauung der Binomialverteilung und der Umgang mit kumulierten Wahrscheinlichkeiten sind wichtig für die Durchführung eines Signifikanztests. Prüfe und wiederhole dein Können dazu in Übung 2.

Übung 2: Grafische Anschauung und Berechnung von Wahrscheinlichkeiten

Die Schüler*innen der Fridays For Future Gruppe befragen 1000 Menschen in Deutschland, ob sie den Klimawandel als Bedrohung ansehen. Für die folgenden Aufgaben wird angenommen, dass immer noch 71% der Menschen in Deutschland sich durch den Klimawandel bedroht fühlen.

a) Skizziere die Binomialverteilung.

Neueins.png

Bereche die Wahrscheinlichkeit dafür,...

b) dass in der Stichprobe genau 710 Menschen den Klimawandel als Bedrohung ansehen.

In der Skizze ist die gesuchte Wahrscheinlichkeit rot markiert.
Neuzwei.png
Nutze die Formel von Bernoulli!
Zur Berechnung nutze deinen Taschenrechner!

.

Die Wahrscheinlichkeit, dass in der Stichprobe genau 710 Menschen den Klimawandel als Bedrohung ansehen, beträgt 2,78 %.

c) Das höchstens 680 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen.

Höchtes heißt, es können 1,2,3, ...680 der Befragten den Klimawandel als Bedrohung ansehen.
In der Skizze ist die gesuchte Wahrscheinlichkeit rot markiert.
NeuDrei.png

Nutze die Formel für die kumulierten Wahrscheinlichkeit (siehe Übung 1).
Nutze zur Berechnung deinen Taschenrechner!


Die Wahrscheinlichkeit, dass in der Stichprobe höchstens 680 der Menschen den Klimawandel als Bedrohung ansehen, beträgt 2,06. %

d) Das mindestens 740 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen.

Mindestens heißt, es können 740, 741, ...,1000 der Befragten den Klimawandel als Bedrohung ansehen.
In der Skizze ist die gesuchte Wahrscheinlichkeit rot markiert.
NeuVier.png

Mindestwahrscheinlichkeiten werden über die Gegenwahrscheinlichkeit berechnet:
P(mindestens k)= 1 - P(höchstens k - 1)
Die Wahrscheinlichkeit für höchstens kannst du wieder mit dem Taschenrechner berechnen.


Die Wahrscheinlichkeit, dass in der Stichprobe mindestens 740 Menschen den Klimawandel als Bedrohung ansehen, beträgt 1,91 %.

Super gemacht! Dann geht es jetzt weiter mit dem Signifikanztest!