Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Die Ableitung als lokale Änderungsrate/Aufgabe 2 b): Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
Zeile 1: Zeile 1:
{{Box|Aufgabe 1.3|Bestimmen Sie nun näherungsweise wie schnell der Porsche nach 3 Sekunden gefahren ist. Wählen Sie hierzu ein beliebiges Zeitintervall in dem die dritte Sekunde enthalten ist und verkleinern Sie dieses.<br /> <br /> a) Verkleinern Sie das Intervall in folgender Tabelle mindestens 5 mal und halten Sie die Tabelle schriftlich fest. <br /> [[Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Die Ableitung als lokale Änderungsrate/Tabelle|zur Tabelle]]<br />
{{Box|Aufgabe 1.3|Bestimmen Sie nun näherungsweise wie schnell der Porsche nach 3 Sekunden gefahren ist. Wählen Sie hierzu ein beliebiges Zeitintervall in dem die dritte Sekunde enthalten ist und verkleinern Sie dieses.<br /> <br /> a) Verkleinern Sie das Intervall in folgender Tabelle mindestens 5 mal, sodass die Geschwindigkeit zur dritten Sekunde möglichst genau bestimmt wird und halten Sie die Tabelle schriftlich fest. <br /> [[Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Die Ableitung als lokale Änderungsrate/Tabelle|zur Tabelle]]<br />
b) Führe Sie die Verkleinerung des Zeitintervalls nun erneut in diesem Applet durch.<br /> Beschreibe Sie die Veränderung der Sekante und des Werts der Sekante bei dieser Verkleinerung und halten Sie dies schriftlich fest.<br />
b) Führen Sie die Verkleinerung des Zeitintervalls nun erneut in diesem Applet durch.<br /> Beschreibe Sie die Veränderung der Sekante und des Werts der Sekante bei dieser Verkleinerung und halten Sie dies schriftlich fest.<br />
c) Was sind die Eigenschaften dieser neu entstandenen Geraden? <br />
c) Was sind die Eigenschaften dieser neu entstandenen Geraden? <br />
{{Lösung versteckt|Durch die beliebig gute Näherung von T1 und T2 zur Sekunde 3, lässt sich die neu entstandene Gerade als Gerade interpretieren, die nur noch den Berührpunkt <math>P(3|f(3))</math> am Graphen von <math>f</math> hat. Diese Gerade nennt man Tangente.
{{Lösung versteckt|Durch die beliebig gute Näherung von T1 und T2 zur Sekunde 3, lässt sich die neu entstandene Gerade als Gerade interpretieren, die nur noch den Berührpunkt <math>P(3|f(3))</math> am Graphen von <math>f</math> hat. Diese Gerade nennt man Tangente.

Aktuelle Version vom 20. August 2019, 16:43 Uhr

Aufgabe 1.3

Bestimmen Sie nun näherungsweise wie schnell der Porsche nach 3 Sekunden gefahren ist. Wählen Sie hierzu ein beliebiges Zeitintervall in dem die dritte Sekunde enthalten ist und verkleinern Sie dieses.

a) Verkleinern Sie das Intervall in folgender Tabelle mindestens 5 mal, sodass die Geschwindigkeit zur dritten Sekunde möglichst genau bestimmt wird und halten Sie die Tabelle schriftlich fest.
zur Tabelle
b) Führen Sie die Verkleinerung des Zeitintervalls nun erneut in diesem Applet durch.
Beschreibe Sie die Veränderung der Sekante und des Werts der Sekante bei dieser Verkleinerung und halten Sie dies schriftlich fest.
c) Was sind die Eigenschaften dieser neu entstandenen Geraden?

Durch die beliebig gute Näherung von T1 und T2 zur Sekunde 3, lässt sich die neu entstandene Gerade als Gerade interpretieren, die nur noch den Berührpunkt am Graphen von hat. Diese Gerade nennt man Tangente.

Tangente
Die Gerade, die den Graphen von am Punkt berührt und die gleiche Steigung wie der Graph von in diesem Punkt hat, nennt man die Tangente von am Punkt .

d) Als was lässt sich in diesem Kontext die Steigung dieser Geraden interpretieren?

Die Steigung dieser Geraden lässt sich nun als die momentane Geschwindigkeit (momentane Änderungsrate) interpretieren.
GeoGebra