Zentrische Streckung/Abbildung durch zentrische Streckung/3.Station: Unterschied zwischen den Versionen
Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 8: | Zeile 8: | ||
==3. Station: Berechnung der Streckenlängen und des Streckungsfaktors== | ==3. Station: Berechnung der Streckenlängen und des Streckungsfaktors== | ||
{{Box|1= Wie | {{Box|1= Wie lang ist die Strecke <math> \overline{P'Q'} </math> im Verhältnis zur Strecke <math> \overline{PQ} </math>|2= | ||
Wie du in der 2. Station schon herausgefunden hast, ist die Bildstrecke <math> \vert k \vert </math>-mal so lang wie die Urbildstrecke.<br> | Wie du in der 2. Station schon herausgefunden hast, ist die Bildstrecke <math>\vert k \vert </math>-mal so lang wie die Urbildstrecke.<br> | ||
Geometrisch bedeutet dies für einen beliebigen Punkt P: <math> \overline{ZP'} = \ | Geometrisch bedeutet dies für einen beliebigen Punkt P: <math> \overline{ZP'} = \vert k \vert \cdot \overline{ZP}</math><br> | ||
Daraus folgt: <math>\ | Daraus folgt: <math>\vert k \vert = {\overline{ZP'}\over\overline{ZP}}</math><br> | ||
<br> | <br> | ||
Ob dies auch zur Berechnung von Strecken, die nicht durch den Punkt Z verlaufen, gilt, kannst du durch Umformung herausfinden. <br> | Ob dies auch zur Berechnung von Strecken, die nicht durch den Punkt Z verlaufen, gilt, kannst du durch Umformung herausfinden. <br> | ||
Zeile 27: | Zeile 27: | ||
<math> \overline{PQ} = \overline{ZQ} - \overline{ZP} </math> und <math> \overline{P'Q'} = \overline{ZQ'} - \overline{ZP'} </math> | <math> \overline{PQ} = \overline{ZQ} - \overline{ZP} </math> und <math> \overline{P'Q'} = \overline{ZQ'} - \overline{ZP'} </math> | ||
<math>\Rightarrow \overline{P'Q'} = </math> '''<math> \vert k \vert </math> '''<math> \cdot \overline{ZQ} - \vert k \vert \cdot </math> '''<math> \overline{ZP} | <math>\Rightarrow \overline{P'Q'} = </math> '''<math> \vert k \vert </math>''' <math> \cdot \overline{ZQ} - \vert k \vert \cdot </math> '''<math> \overline{ZP}</math>''' | ||
<math>\Rightarrow \overline{P'Q'} = \vert k \vert \cdot (</math>'''<math> \overline{ZQ} </math>''' - '''<math> \overline{ZP}</math>''') | <math>\Rightarrow \overline{P'Q'} = \vert k \vert \cdot (</math>'''<math> \overline{ZQ} </math>''' - '''<math> \overline{ZP}</math>''') |
Version vom 18. August 2019, 18:14 Uhr
3. Station: Berechnung der Streckenlängen und des Streckungsfaktors
Wie lang ist die Strecke im Verhältnis zur Strecke
Wie du in der 2. Station schon herausgefunden hast, ist die Bildstrecke -mal so lang wie die Urbildstrecke.
Geometrisch bedeutet dies für einen beliebigen Punkt P:
Daraus folgt:
Ob dies auch zur Berechnung von Strecken, die nicht durch den Punkt Z verlaufen, gilt, kannst du durch Umformung herausfinden.
Ziehe dafür den richtigen Ausdruck in die passende Lücke: