Benutzer:Cloehner/Stochastik Einführungsphase NRW/Zufallsgrößen - Wahrscheinlichkeitsverteilungen - Erwartungswerte: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
(kein Unterschied)

Version vom 27. April 2019, 13:21 Uhr


Übergreifende Aufgabe

Erstelle auf Basis der Ergebnisse aller Aufgaben dieser Seite ein Produkt, aus dem die Bedeutung der eingeführten Fachbegriffe sowie die Vorgehensweise zur Berechnung neu eingeführter Werte hervorgeht. Entscheide selbst, in welcher Form du die Inhalte aufbereiten möchtest (z.B. in Textform, als Sketchnote, als Präsentation, ...)

Du darfst diese Aufgabe alleine oder in einer Gruppe von maximal vier Personen bearbeiten.


Glücksrad zweifarbig.jpg

Klara bietet auf einem Straßenfest ein Glücksspiel an. Das abgebildete Glücksrad wird dreimal gedreht. Wird bei jeder Drehung ein graues Feld getroffen, so verliert man seinen Einsatz von 1,00 €. Wenn bei den drei Drehungen genau einmal ein rotes Feld getroffen wird, wird 1,50 € ausgezahlt, bei zweimal „rot” wird 2,50 € ausgezahlt und bei dreimal „rot” beträgt die Auszahlungssumme 5 €.


Die Wahrscheinlichkeiten der verschiedenen Gewinnsummen

Aufgabe 1
Stelle das dreimalige Drehen des Glücksrades in einem Baumdiagramm dar.


Aufgabe 2
Lege eine Tabelle an, in der du in der oberen Zeile die möglichen Gewinnsummen und darunter die Wahrscheinlichkeit, mit der die entsprechende Gewinnsumme erzielt wird, zusammenstellst. Du kannst dein Ergebnis überprüfen, indem du die Werte in die folgende Tabelle einträgst. Alle Werte, die nach einem Klick auf "Prüfen" stehen bleiben, sind korrekt.


Gewinnsumme: -1,00|-1() 0,50|0,5() 1,50|1,5() 4,00|4()
Wahrscheinlichkeit: 0,512|64/125() 0,384|48/125() 0,096|12/125() 0,008|1/125()


Aufgabe 3

Informiere dich über die Bedeutung der Begriffe diskrete Zufallsgröße und Wahrscheinlichkeitsverteilung.

Zur Wahrscheinlichkeitsverteilung wird in einigen Quellen auf die Wahrscheinlichkeits- und die Verteilungsfunktion eingegangen. Beide würden an dieser Stelle jedoch zu weit führen.

Erläutere, inwiefern dir auf dieser Seite bereits eine diskrete Zufallsgröße und eine Wahrscheinlichkeitsverteilung begegnet sind. Beachte mit Blick auf das übergreifende Produkt, welches du zu dieser Seite erstellen sollst insbesondere auch Formelzeichen und Schreibweisen wie , und .

Eine Erläuterung geht deutlich über eine reine Zuordung der Begriffe heraus. Die Bedeutung der beiden Begriffe soll in dieser Aufgabe exemplarisch verdeutlicht werden!


Handelt es sich um ein faires Spiel?

Natürlich kann man bei einem Glücksspiel nicht immer gewinnen. Dennoch lassen sich Kriterien definieren, anhand derer man entscheiden kann, ob das Spiel fair gestaltet ist.


Aufgabe 4
Formuliere Bedingungen, unter denen du ein Glücksspiel als fair bezeichnen würdest.


Aufgabe 5

Angenommen das Glücksspiel wird 1000-mal durchgeführt. Wie oft sind die verschiedenen Gewinnsummen dabei im Idealfall zu erwarten?

Berechne auf Basis der vorhergesagten absoluten Häufigkeiten das arithmetische Mittel der Gewinnsummen.

Nach dem Gesetz der großen Zahlen nähern sich die relativen Häufigkeiten der Ausgänge eines Glücksspiels bei sehr großer Versuchsanzahl immer weiter den theoretischen Wahrscheinlichkeiten an.
Nach 1000 Runden können als Schätzwert für die relativen Häufigkeiten der verschiedenen Gewinnsummen die Wahrscheinlichkeiten aus Aufgabe 2 verwendet werden. Berechne daraus die gesuchten absoluten Häufigkeiten.
Nach 1000 Versuchen hat man im Schnitt ein Gewinn von rund -0,14 € (genauer Wert: -0,144 €) gemacht.


Häufig findet man zur Berechnung des arithmetischen Mittels zwei verschiedene Formeln:

Variante 1, basierend auf den Merkmalsausprägungen , deren absoluten Häufigkeiten und der Gesamtzahl der Durchgänge :

Variante 2, basierend auf den Merkmalsausprägungen und deren relativen Häufigkeiten :


Auch, wenn du bei Aufgabe 5 vermutlich nicht genau nach einer der beiden Formeln vorgegangen bist, wirst du im Term zu deiner Berechnung vermutlich eine der beiden Varianten wieder finden.


Aufgabe 6
  • Berechne das arithmetische Mittel aus Aufgabe 5 auch mit der Formel, mit der du es zuvor nicht berechnet hast.
  • Begründe, dass beide Formeln immer zum selben Ergebnis führen.
  • Welche der Formeln ist unter welchen Voraussetzungen leichter anwendbar?


Um das arithmetische Mittel in den Aufgaben 5 und 6 zu berechnen, wurden Werte für die absoluten und relativen Häufigkeiten der Gewinnbeträge benötigt. Da diese noch nicht vorlagen, musstest du sie auf Basis der Wahrscheinlichkeiten schätzen. Im mathematischen Sinne hast du damit keinen arithmentischen Mittelwert sondern den Erwartungswert der Zufallsgröße , die den verschiedenen Ergebnissen der dreimaligen Drehung des Glücksrades den entsprechenden Gewinn in € zuordnet, berechnet.