Benutzer:Cloehner/Integralrechnung/Hauptsatz der Differenzial- und Integralrechnung: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 23: Zeile 23:


|Hervorhebung1}}
|Hervorhebung1}}




Zeile 28: Zeile 29:




{{Aufgaben|2|Berechne analog zum Beispiel <math>\int_{1}^{5}2x^3-5x \ dx</math> und <math>\int_{-2}^{4} 6x^2-5 \ dx</math>.}}
{{Aufgaben|2|Berechne analog zum Beispiel <math>\int_{1}^{5}(2x^3-5x) \ dx</math> und <math>\int_{-2}^{4} (6x^2-5) \ dx</math>.}}

Version vom 13. Januar 2019, 16:32 Uhr

Bereits in Abschnitt 4 hast du einen Zusammenhang zwischen dem Flächeninhalt unter einem Funktionsgraphen und den Funktionswerten der entsprechenden Flächeninhaltsfunktion an den Intervallgrenzen erkannt. Dieser Zusammenhang lässt sich für beliebige Stammfunktionen verallgemeinern.


Merke: Hauptsatz der Differenzial- und Integralrechnung

Ist F eine Stammfunktionktion zu f, so gilt im Intervall [a;b]:


Für die Differenz der Funktionswerte schreibt man auch kurz:


Beispiel
Aufgabe
Berechne das Integral .


Lösung


Aufgabe 1
Erläutere die Lösungsschritte im Beispiel mit eigenen Worten.


Aufgabe 2
Berechne analog zum Beispiel und .