Benutzer:Cloehner/Integralrechnung/Das Integral: Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „Du hast bereits herausgefunden, dass der Flächeninhalt unter einer Funktion in vielen Kontexten eine sinnvolle Bedeutung hat. Mit dem GeoGebra-Applet und den…“) |
K (Cloehner verschob die Seite Benutzer:Cloehner/Integralrechnung/Ober- und Untersummen nach Benutzer:Cloehner/Integralrechnung/Das Integral: Der Inhalt der Seite geht deutlich über das ursprüngliche Thema hinaus.) |
(kein Unterschied)
|
Version vom 2. Dezember 2018, 19:16 Uhr
Du hast bereits herausgefunden, dass der Flächeninhalt unter einer Funktion in vielen Kontexten eine sinnvolle Bedeutung hat. Mit dem GeoGebra-Applet und den Aufgaben auf dieser Seite lernst du, wie man auch den Flächeninhalt unter einer krummlienig begrenzten Funktion (näherungsweise) bestimmen kann.
Ober- und Untersumme
Orientierter Flächeninhalt
Betrachte im Applet nun die Funktion f mit f(x)=0,3x3+x2-3x-1. Bestimme das Integral auf dem Intervall [-1,5 ; 2,8]. Was fällt auf?
Experimentiere mit den Intervallgrenzen a und b und formuliere eine Vermutung dazu, was man unter dem Begriff orientierter Flächeninhalt versteht.
Übungsaufgaben zum Integral
Bearbeite als Übungsaufgaben die Aufgaben 1 bis 3 auf Seite 56 im Schulbuch (Lambacher Schweizer 2015, NRW GK).
Hinweise zur Integralschreibweise findest du auf Seite 54.