Potenzfunktionen - 2. Stufe: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Peter Hofbauer
Keine Bearbeitungszusammenfassung
Main>Peter Hofbauer
Keine Bearbeitungszusammenfassung
Zeile 24: Zeile 24:
:<br />
:<br />
: zu 2.) Unabhängig vom Exponenten n laufen allge Graphen durch die Punkte (-1;1) und (1;1).
: zu 2.) Unabhängig vom Exponenten n laufen allge Graphen durch die Punkte (-1;1) und (1;1).
:: '''Begründung''' für den Punkt (-1;1): An der Stelle <math>x=-1</math> ist <math>f(x)=f(-1)=(-1)^{-n}=\textstyle \frac{1}{(-1)^n}.</math> Da wir hier nur gerade Zahlen <math>n \in \{2,4,6,...\}</math> betrachten gilt weiter: <math>\textstyle \frac{1}{(-1)^n}= \textstyle \frac{1}{1}=1</math> unabhängig von n.
:: '''Begründung''' für den Punkt (-1;1): An der Stelle x<math>=</math>-1 ist <math>f(x)=f(-1)=(-1)^{-n}=\textstyle \frac{1}{(-1)^n}.</math> Da wir hier nur gerade Zahlen <math>n \in \{2,4,6,...\}</math> betrachten gilt weiter: <math>\textstyle \frac{1}{(-1)^n}= \textstyle \frac{1}{1}=1</math> unabhängig von n.
:: '''Begründung''' für den Punkt (1;1): An der Stelle <math>x=1</math> ist <math>f(x)=f(1)=1^{-n}=\textstyle \frac{1}{1^n}=1</math> für alle <math>n \in {\Bbb N}.</math>
:: '''Begründung''' für den Punkt (1;1): An der Stelle x<math>=</math>1 ist <math>f(x)=f(1)=1^{-n}=\textstyle \frac{1}{1^n}=1</math> für alle <math>n \in {\Bbb N}.</math>
:<br />
:<br />
:zu 3.) Die Punkte (-1;1) und (1;1) bleiben unverändert.  
:zu 3.) Die Punkte (-1;1) und (1;1) bleiben unverändert.  
:: Dazwischen, genauer in den Intervallen ]-1;0[ und ]0;1[ werden die Fuktionswerte kleiner, an den Stellen x für <math>x< -1</math> bzw. <math>x > 1</math> werden die Funktionswerte größer.  
:: Dazwischen, genauer in den Intervallen ]-1;0[ und ]0;1[ werden die Fuktionswerte kleiner, an den Stellen x für x < -1 bzw. x > 1 werden die Funktionswerte größer.  
:<br />
:<br />
: zu 4.)
: zu 4.)
Zeile 68: Zeile 68:
zu 1.)  
zu 1.)  
:* Die Graphen sind punktsymmetrisch zum Ursprung (0;0).  
:* Die Graphen sind punktsymmetrisch zum Ursprung (0;0).  
::  Beachte: für <math>n=1</math> ist der Graph zusätzlich achsensymmetrisch zur Geraden <math>g: y=x.</math>
::  Beachte: für n<math>=</math>1 ist der Graph zusätzlich achsensymmetrisch zur Geraden g: y<math>=</math>x.
:* Alle Graphen sind auf ihrem Definitionsbereich <math>\scriptstyle {\Bbb D} = {\Bbb R}\backslash \{0\}</math> streng monoton fallend.
:* Alle Graphen sind auf ihrem Definitionsbereich <math>\scriptstyle {\Bbb D} = {\Bbb R}\backslash \{0\}</math> streng monoton fallend.
:* Als Funktionswerte werden alle Werte aus <math>\scriptstyle {\Bbb R}\backslash \{0\}</math>. Damit sind Definitionsbereich und Wertebereich gleich.
:* Als Funktionswerte werden alle Werte aus <math>\scriptstyle {\Bbb R}\backslash \{0\}</math>. Damit sind Definitionsbereich und Wertebereich gleich.
<br />
<br />
zu 2.) Alle Graphen verlaufen durch die Punkte (-1;-1) und (1;1).
zu 2.) Alle Graphen verlaufen durch die Punkte (-1;-1) und (1;1).
: '''Begründung''' für Punkt (-1;-1): An der Stelle <math>x=-1</math> ist <math>f(x)=f(-1)=(-1)^{-n}=\textstyle \frac{1}{(-1)^n}=\textstyle \left( \frac{\,\,1}{-1}\right)^n</math>. Da die Zahl n nach Voraussetzung ungerade ist, ist (n-1) eine gerade Zahl. Deswegen ist <math>\textstyle \left( \frac{\,\,1}{-1}\right)^n =\left( \frac{\,\,1}{-1}\right) \cdot \left( \frac{\,\,1}{-1}\right)^{n-1}=\left( \frac{\,\,1}{-1}\right) \cdot \left( \frac{1}{1}\right)^{n-1} = -1</math> für alle betrachteten n.
: '''Begründung''' für Punkt (-1;-1): An der Stelle x<math>=</math>-1 ist <math>f(x)=f(-1)=(-1)^{-n}=\textstyle \frac{1}{(-1)^n}=\textstyle \left( \frac{\,\,1}{-1}\right)^n</math>. Da die Zahl n nach Voraussetzung ungerade ist, ist (n-1) eine gerade Zahl. Deswegen ist <math>\textstyle \left( \frac{\,\,1}{-1}\right)^n =\left( \frac{\,\,1}{-1}\right) \cdot \left( \frac{\,\,1}{-1}\right)^{n-1}=\left( \frac{\,\,1}{-1}\right) \cdot \left( \frac{1}{1}\right)^{n-1} = -1</math> für alle betrachteten n.
: '''Begründung''' für den Punkt (1;1): An der Stelle <math>x=1</math> ist <math>f(x)=f(1)=1^{-n}=\textstyle \frac{1}{1^n}=1</math> für alle <math>n \in {\Bbb N}.</math>
: '''Begründung''' für den Punkt (1;1): An der Stelle x<math>=</math>1 ist <math>f(x)=f(1)=1^{-n}=\textstyle \frac{1}{1^n}=1</math> für alle <math>n \in {\Bbb N}.</math>
zu 3.) Die Punkte (-1;-1) und (1;1) bleiben von der Änderung unberührt.  
zu 3.) Die Punkte (-1;-1) und (1;1) bleiben von der Änderung unberührt.  
: In den Intervallen ]-∞;-1[ und ]1;∞[ schmiegt sich der Graph näher an die y-Achse an, wenn n erhöht wird.  
: In den Intervallen ]-∞;-1[ und ]1;∞[ schmiegt sich der Graph näher an die y-Achse an, wenn n erhöht wird.  

Version vom 17. Januar 2011, 09:57 Uhr

Vorlage:Potenzfunktionen


Die Graphen der Funktionen f(x) = x-n, n IN

Gerade Potenzen

Wir betrachten zunächst die Graphen der Funktionen f(x) = x-n, wenn n eine gerade Zahl ist, also n = 2, 4, 6, ...

Vorlage:Arbeiten
Die Datei [INVALID] wurde nicht gefunden.

Parabel und Hyperbel

Du hast nun Potenzfunktionen der Form f(x)=xn und f(x)=x-n kennengelernt. Ihre Graphen spielen in der Mathematik und in den Naturwissenschaften eine wichtige Rolle. Sie haben deshalb eigene Bezeichnungen: Vorlage:Merksatz

Ungerade Potenzen

Wir betrachten nun die Graphen der Funktionen f(x) = x-n, wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..

Die Datei [INVALID] wurde nicht gefunden.

Vorlage:Arbeiten

Teste dein Wissen

Vorlage:Arbeiten

Die Graphen von f(x) = a x-n mit a IR

Wir betrachten jetzt die Funktionen der Form , wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n IN, a IR .

Vorlage:Arbeiten Die Datei [INVALID] wurde nicht gefunden.


Die Datei [INVALID] wurde nicht gefunden.

Vorlage:Arbeiten

Teste Dein Wissen




Maehnrot.jpg Als nächstes erfährst du etwas über Potenzfunktionen, die Stammbrüche im Exponenten haben.

Datei:Pfeil.gif   Hier geht es weiter.