Potenzfunktionen - 2. Stufe: Unterschied zwischen den Versionen
Aus ZUM-Unterrichten
Main>Jan Wörler (Lösung zu Aufg. 4.2 eingef.) |
Main>Jan Wörler |
||
Zeile 137: | Zeile 137: | ||
:* Da die y-Komponente des Punktes A(-1;-1) negativ ist, die des Punktes B(1;3) dagegen positiv, muss die gesuchte Zahl n ungerade sein. | :* Da die y-Komponente des Punktes A(-1;-1) negativ ist, die des Punktes B(1;3) dagegen positiv, muss die gesuchte Zahl n ungerade sein. | ||
:* Wenn der Graph der gesuchten Funktion durch den Punkt A(-1;-1) laufen soll, muss der Parameter <math>a = 1</math> sein. | :* Wenn der Graph der gesuchten Funktion durch den Punkt A(-1;-1) laufen soll, muss der Parameter <math>a = 1</math> sein. | ||
: Zusammengenommen ist die gesuchte Funktion von der Art f(x)=x^{-n} mit ungeradem n. Diese Funktionen haben alle an der Stelle x=1 den Funktionswert f(x)=1. Daher kann es keine Funktion geben, die an der Stelle x=1 den Funktionswert f(x)=3 hat. | : Zusammengenommen ist die gesuchte Funktion von der Art <math>f(x)=x^{-n}</math> mit ungeradem n. Diese Funktionen haben alle an der Stelle <math>x=1</math> den Funktionswert <math>f(x)=1.</math> Daher kann es keine Funktion geben, die an der Stelle <math>x=1</math> den Funktionswert <math>f(x)=3</math> hat. | ||
}} | |||
}} | }} | ||
|} | |} |
Version vom 31. März 2009, 16:19 Uhr
Die Graphen der Funktionen mit f(x) = x-n, n ∈ IN
Gerade Potenzen
Wir betrachten zunächst die Graphen der Funktionen mit f(x) = x-n, wenn n eine gerade Zahl ist, also n = 2, 4, 6, ...
Vorlage:Arbeiten |
Die Datei [INVALID] wurde nicht gefunden. |
Parabel und Hyperbel
Du hast nun Potenzfunktionen mit den Gleichungen und kennengelernt. Ihre Graphen spielen in der Mathematik und in den Naturwissenschaften eine wichtige Rolle. Sie haben deshalb eigene Bezeichnungen:
Vorlage:Merksatz
Ungerade Potenzen
Wir betrachten nun die Graphen der Funktionen mit , wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..
Die Datei [INVALID] wurde nicht gefunden. |
Teste dein Wissen
Die Graphen von f(x) = a x-n mit a ∈ IR
Wir betrachten jetzt die Funktionen mit , wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n ∈ IN, a ∈ IR .
Vorlage:Arbeiten | Die Datei [INVALID] wurde nicht gefunden. |
Die Datei [INVALID] wurde nicht gefunden. |
Teste Dein Wissen
- Ordne dem Graphen der Potenzfunktion die richtige Gleichung zu!
- Erkenne die Art der Funktion und ordne dem Graphen die entsprechende Funktionsgleichung zu!
Als nächstes erfährst du etwas über Potenzfunktionen, die Stammbrüche im Exponenten haben. |