Potenzfunktionen - 2. Stufe: Unterschied zwischen den Versionen
Aus ZUM-Unterrichten
Main>Jan Wörler (Lösung zu Aufgabe 1.3 eingef.) |
Main>Jan Wörler (Lösung zu Aufgabe 1.2 eingef. + Layout) |
||
Zeile 23: | Zeile 23: | ||
:* Für die betrachteten Exponenten sind alle Graphen im Intervall <math>]-\infty;0[</math> streng monoton steigend und im Intervall <math>]0;\infty[</math> streng monoton fallend. | :* Für die betrachteten Exponenten sind alle Graphen im Intervall <math>]-\infty;0[</math> streng monoton steigend und im Intervall <math>]0;\infty[</math> streng monoton fallend. | ||
:* Die Funktionswerte aller Graphen sind positiv, ihre Wertebereiche sind <math>]0; \infty[</math>. Die x-Achse und die y-Achse sind Asympthoden der Funktionsgraphen. | :* Die Funktionswerte aller Graphen sind positiv, ihre Wertebereiche sind <math>]0; \infty[</math>. Die x-Achse und die y-Achse sind Asympthoden der Funktionsgraphen. | ||
:<br /> | |||
: zu 2.) Unabhängig vom Exponenten n laufen allge Graphen durch die Punkte (-1;1) und (1;1). | : zu 2.) Unabhängig vom Exponenten n laufen allge Graphen durch die Punkte (-1;1) und (1;1). | ||
:: '''Begründung:''' | :: '''Begründung''' für den Punkt (-1;1): An der Stelle <math>x=-1</math> ist <math>f(x)=f(-1)=(-1)^{-n}=\textstyle \frac{1}{(-1)^n}.</math> Da wir hier nur gerade Zahlen <math>n \in \{2,4,6,...\}</math> betrachten gilt weiter: <math>\textstyle \frac{1}{(-1)^n}= \textstyle \frac{1}{1}=1</math> unabhängig von n. | ||
:: '''Begründung''' für den Punkt (1;1): An der Stelle <math>x=1</math> ist <math>f(x)=f(1)=1^{-n}=\textstyle \frac{1}{1^n}=1</math> für alle <math>n \in {\Bbb N}.</math> | |||
:<br /> | |||
:zu 3.) Die Punkte (-1;1) und (1;1) bleiben unverändert. | :zu 3.) Die Punkte (-1;1) und (1;1) bleiben unverändert. | ||
:: Dazwischen, genauer in den Intervallen ]-1;0[ und ]0;1[ werden die Fuktionswerte kleiner, an den Stellen x für <math>x< -1</math> bzw. <math>x > 1</math> werden die Funktionswerte größer. | :: Dazwischen, genauer in den Intervallen ]-1;0[ und ]0;1[ werden die Fuktionswerte kleiner, an den Stellen x für <math>x< -1</math> bzw. <math>x > 1</math> werden die Funktionswerte größer. |
Version vom 31. März 2009, 14:47 Uhr
Die Graphen der Funktionen mit f(x) = x-n, n ∈ IN
Gerade Potenzen
Wir betrachten zunächst die Graphen der Funktionen mit f(x) = x-n, wenn n eine gerade Zahl ist, also n = 2, 4, 6, ...
Vorlage:Arbeiten |
Die Datei [INVALID] wurde nicht gefunden. |
Parabel und Hyperbel
Du hast nun Potenzfunktionen mit den Gleichungen und kennengelernt. Ihre Graphen spielen in der Mathematik und in den Naturwissenschaften eine wichtige Rolle. Sie haben deshalb eigene Bezeichnungen:
Vorlage:Merksatz
Ungerade Potenzen
Wir betrachten nun die Graphen der Funktionen mit , wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..
Die Datei [INVALID] wurde nicht gefunden. |
Teste dein Wissen
Die Graphen von f(x) = a x-n mit a ∈ IR
Wir betrachten jetzt die Funktionen mit , wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n ∈ IN, a ∈ IR .
Vorlage:Arbeiten | Die Datei [INVALID] wurde nicht gefunden. |
Die Datei [INVALID] wurde nicht gefunden. |
Teste Dein Wissen
- Ordne dem Graphen der Potenzfunktion die richtige Gleichung zu!
- Erkenne die Art der Funktion und ordne dem Graphen die entsprechende Funktionsgleichung zu!
Als nächstes erfährst du etwas über Potenzfunktionen, die Stammbrüche im Exponenten haben. |